• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design Principles for High Energy Density Cathode Materials Using Anionic Redox Activity / アニオンレドックスを利用した高容量電極材料の設計指針

Zhou, Yingying 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22548号 / 人博第951号 / 新制||人||226(附属図書館) / 2019||人博||951(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 田部 勢津久, 准教授 藤原 直樹 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
2

Analysis of Crystal and Electronic Structures of Next Generation Cathode Materials / 次世代正極材料の結晶構造及び電子構造の解析

Watanabe, Aruto 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(人間・環境学) / 甲第22549号 / 人博第952号 / 新制||人||226(附属図書館) / 2019||人博||952(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 吉田 寿雄, 准教授 戸﨑 充男 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
3

Multiscale chemistry and design principles of stable cathode materials for Na-ion and Li-ion batteries

Rahman, Muhammad Mominur 03 June 2021 (has links)
Alkali-ion batteries have revolutionized modern life through enabling the widespread application of portable electronic devices. The call for adapting renewable energy in many applications will also see an increase in the demand of alkali-ion batteries, specially to account for the intermittent nature of the renewable energy sources. However, the advancement of such technologies will require innovation on the forefront of materials development as well as fundamental understanding on the physical and chemical processes from atomic to device length scales. Herein, we focus on advancing energy storage devices such as alkali-ion batteries through cathode materials development and discovery as well as fundamental understanding through multiscale advanced synchrotron spectroscopic and microscopic characterizations. Multiscale electrochemical properties of cathode materials are unraveled through complementary characterizations and design principles are developed for stable cathode materials for alkali-ion batteries. In Chapter 1, we provide a comprehensive background on alkali-ion batteries and cathode materials. The future prospect of Li-ion and beyond Li-ion batteries are summarized. Surface to bulk chemistry of alkali-ion cathode materials is introduced. The prospect of combined cationic and anionic redox processes to enhance the energy density of cathode materials is discussed. Structural and chemical complexities in cathode materials during electrochemical cycling as well as due to anionic redox are summarized. In Chapter 2, we explain an inaugural effort on tuning the 3D nano/mesoscale elemental distribution of cathode materials to positively impact the electrochemical performance of cathode materials. We show that engineering the elemental distribution can take advantage of depth dependent redox reactions and curtail harmful side reactions at cathode-electrolyte interface which can stabilize the electrochemical performance. In Chapter 3, we show that the surface to bulk chemistry of cathode particles is distinct under applied electrochemical potential. We show that the severe surface degradation at the beginning stages of cycling can impact the long-term cycling performance of cathode materials in alkali-ion batteries. In Chapter 4, we utilize the structural and chemical complexities of sodium layered oxide materials to synthesize stable cathode materials for half cell and full cell sodium-ion batteries. Meanwhile, challenges with enabling long term cycling (more than 1000 cycles) are deciphered to be transition metal dissolution and local and global structural transformations. In Chapter 5, we utilize anionic redox in conjunction with conventional cationic redox of cathode materials for alkali-ion batteries to enhance the energy density. We show that the stability of anionic redox is closely related to the local transition metal environment. We also show that a reversible evolution of local transition metal environment during cycling can lead to stable anionic redox. In Chapter 6, we provide design principles for cathode materials for advanced alkali-ion batteries for application under extreme environments (e.g., outer space and nuclear power industries). For the first time, we systematically study the microstructural evolution of cathode materials under extreme irradiation and temperature to unravel the key factors affecting the stability of battery cathodes. Our experimental and computational studies show that a cathode material with smaller cationic antisite defect formation energy than another is more resilient under extreme environments. / Doctor of Philosophy / Alkali-ion batteries are finding many applications in our life, ranging from portable electronic devices, electric vehicles, grid energy storage, space exploration and so on. Cathode materials play a crucial role in the overall performance of alkali-ion batteries. Reliable application of alkali-ion batteries requires stable and high-energy cathode materials. Hence, design principles must be developed for high-performance cathode materials. Such design principles can be benefited from advanced characterizations that can reveal the surface-to-bulk properties of cathode materials. Herein, we focus on formulating design principles for cathode materials for alkali-ion batteries. Aided by advanced synchrotron characterizations, we reveal the surface-to-bulk properties of cathodes and their role on the long-term stability of alkali-ion batteries. We present tuning structural and chemical complexities as a method of designing advanced cathode materials. We show that energy density of cathode materials can be enhanced by taking advantage of a combined cationic and anionic redox. Lastly, we show design principles for stable cathode materials under extreme conditions in outer space and nuclear power industries (under extreme irradiation and temperature). Our study shows that structurally resilient cathode materials under extreme irradiation and temperature can be designed if the size of positively charged cations in cathode materials are almost similar. Our study provides valuable insights on the development of advanced cathode materials for alkali-ion batteries which can aid the future development of energy storage devices.
4

Energy storage properties of iridium oxides : model materials for the study of anionic redox / Propriétés de stockage de l'énergie dans les oxydes d'iridium : matériaux modèles pour l'étude du redox anionique

Perez, Arnaud 19 December 2017 (has links)
L’amélioration des systèmes de stockage d’énergie représente un défi majeur de la transition vers les véhicules électriques et les énergies renouvelables. Les accumulateurs Li-ion, qui ont déjà conquis le marché de l’électronique portatif, constitueront la technologie dominante pour réaliser cet objectif, et sont donc l’objet d’intense recherches afin d’améliorer leurs performances, en particulier en termes de capacité. Parmi les stratégies les plus prometteuse pour augmenter la capacité des matériaux de cathodes, beaucoup d’espoir est placé dans la préparation de matériaux riches en lithium, qui combinent l’activité électrochimique des cations (métaux de transitions) et des anions (oxygène). Cependant, l’activation des propriétés redox de l’oxygène est accompagnée de plusieurs problèmes qui freinent le développement industriel de ces matériaux. Il est donc nécessaire d’obtenir de solides connaissances fondamentales sur le phénomène de redox anionique pour résoudre ces problèmes. En utilisant des matériaux modèles à base d’iridium, ce travail explore comment l’activité de l’oxygène est influencé par son environnement local. Les propriétés électrochimiques des composés Na2IrO3 et Na(Li1/3Ir2/3)O2 sont étudiés afin de comprendre l’impact de la nature de l’ion alcalin. L’influence du ratio Li/M dans les oxydes de structure NaCl est étudié à travers la synthèse d’un nouveau composé de formule Li3IrO4, qui présente la plus haute capacité réversible parmi les matériaux d’insertion utilisés comme cathode. Cette famille de matériau est finalement étendue à des phases contenant des protons par une simple méthode d’échange cationique, et les propriétés électrochimiques d’un nouveau composé H3+xIrO4 sont étudiées, dévoilant de très bonnes propriétés de stockage de puissance en milieu aqueux. / Improving energy storage stands as a key challenge to facilitate the transition to electric vehicles and renewable energy sources in the next years. Li-ion batteries, which have already conquered the portable electronic market, will be the leading technology to achieve this goal and are therefore the focus of intense research activities to improve their performances, especially in terms of capacity. Among the most promising strategies to obtain high capacity cathode materials, the preparation of Li-rich materials combining the redox activity of cations (transition metals) and anions (oxygen) attracts considerable interest. However, activation of anionic redox in these high capacity materials comes with several issues that need to be solved prior their implementation in the energy storage market. Deep fundamental understanding of anionic redox is therefore required to go forward. Using model systems based on iridium, this work explores how the oxygen local environment can play a role on the activation of anionic redox. The electrochemical properties of Na2IrO3 and Na(Li1/3Ir2/3)O2 phases are studied to understand the impact of the alkali nature. The influence of the Li/M ratio in rocksalt oxides is investigated with the synthesis of a new material Li3IrO4, which presents the highest reversible capacity among intercalation cathode materials. The rich electrochemical properties of this family of iridate materials are finally extended by preparing proton-based materials through a simple ion-exchange reaction and the electrochemical properties of a new H3+xIrO4 material are presented, with high rate capability performances.
5

Nouveaux matériaux d'électrodes à haute densité d'énergie pour batteries Na-ion / High energy density new electrode materials for Na-ion batteries

Adamczyk, Evan 26 November 2018 (has links)
Dans les années à venir, la production d’Energie devra passer par l’utilisation de moyens plus respectueux de l’environnement tels que les énergies renouvelables. Leur caractère intermittent nécessite cependant la mise en place d’un stockage à grande échelle. Parmi les différentes technologies à disposition, les batteries Na-ion apparaissent comme une solution de choix grâce aux ressources de sodium illimitées. Dans ce contexte, nous nous sommes donc intéressés à la synthèse et la caractérisation de nouveaux matériaux d’électrodes positives pour batteries Na-ion. Les oxydes de métaux de transition et plus particulièrement le système Na-Mn-O a attiré notre attention pour les avantages que procure le manganèse en termes de non toxicité, de faible coût et d’abondance. Les phases Na4Mn2O5, lacunaire en oxygène, et Na2Mn3O7, lacunaire en cation manganèse, montrent des capacités spécifiques intéressantes par l’action de différents phénomènes redox. Na2Mn3O7 peut notamment être réduite, pour former la phase Na4Mn3O7 et oxydée, par l’action de l’activité redox de l’oxygène, donnant des capacités de 160 et 120 mAh/g, respectivement. Dans le but d’élargir l’étude à un métal de transition pouvant être oxydé à un état de valence +V, la phase isoformulaire Na2V3O7 a également été étudiée et un Na+ peut être réversiblement extrait de cette dernière. / N the coming years, the production of Energy will have to go through the use of more environmentally friendly means such as renewable energies. However, their intermittent nature requires the establishment of a large-scale storage. Among the various technologies available, Na-ion batteries appear as a solution of choice thanks to unlimited sodium resources. In this context, we are interested in the synthesis and characterization of new positive electrode materials for Na-ion batteries. The transition metal oxides, and more particularly the Na-Mn-O system, have drawn our attention to the benefits of manganese in terms of non-toxicity, low cost and abundance. The phase Na4Mn2O5 (with oxygen vacancies) and Na2Mn3O7 (with manganese vacancies) show interesting specific capacities by the action of various redox phenomena. Na2Mn3O7 may be reduced, to form the phase Na4Mn3O7 and oxidized, by the action of the oxygen redox activity, giving capacities of 160 and 120 mAh/g, respectively. In order to extend the study to a transition metal that can be oxidized to a +V valence state, Na2V3O7 has also been studied and one Na+ can be reversibly extracted from it.

Page generated in 0.0673 seconds