Spelling suggestions: "subject:"3reduction number"" "subject:"coeduction number""
1 |
Sobre a Fibra Especial de IdeaisSilva, Tarciana Maria Santos da 12 April 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:03Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 409223 bytes, checksum: 2f15d1850996d787dde4c0d6f0c14731 (MD5)
Previous issue date: 2010-04-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation, we study Cohen-Macaulay and Gorenstein properties of the
fiber cone of an ideal I of d-dimensional Cohen-Macaulay local ring (R,m).We also
obtain a formula to express the multiplicity of the fiber cone of a m-primary ideal I
in terms of mixed multiplicity ed−1(m|I) and superficial elements. As a consequence,
we have that the Cohen-Macaulay properties of the fiber cone of I, with minimal
mixed multiplicity and almost minimal, is characterized by the reduction number
of I. / Neste trabalho estudamos a Cohen-Macaulicidade e a Gorensteincidade da fibra
especial de um ideal em um anel local (R,m) de Cohen-Macaulay com dimensão
d. Também obtemos uma fórmula para a multiplicidade da fibra especial de um
ideal m-primário I em termos da multiplicidade mista ed−1(m|I) e elementos superficiais.
Como consequência dessa fómula, temos que a Cohen-Macaulicidade da
fibra especial de I, quando I tem multiplicidade mista minimal e quase minimal, é
caracterizada em termos do número de redução de I.
|
2 |
Sylvester forms and Rees algebrasMacêdo, Ricado Burity croccia 24 July 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-31T12:43:01Z
No. of bitstreams: 1
arquivo total.pdf: 1366177 bytes, checksum: 1b02d1a5ce5861390070022558e311b0 (MD5) / Made available in DSpace on 2016-03-31T12:43:01Z (GMT). No. of bitstreams: 1
arquivo total.pdf: 1366177 bytes, checksum: 1b02d1a5ce5861390070022558e311b0 (MD5)
Previous issue date: 2015-07-24 / This work is about the Rees algebra of a nite colength almost complete intersection ideal
generated by forms of the same degree in a polynomial ring over a eld. We deal with two
situations which are quite apart from each other: in the rst the forms are monomials in an
unrestricted number of variables, while the second is for general binary forms. The essential
goal in both cases is to obtain the depth of the Rees algebra. It is known that for such ideals the
latter is rarely Cohen{Macaulay (i.e., of maximal depth). Thus, the question remains as to how
far one is from the Cohen{Macaulay case. In the case of monomials one proves under certain
restriction a conjecture of Vasconcelos to the e ect that the Rees algebra is almost Cohen{
Macaulay. At the other end of the spectrum, one proposes a proof of a conjecture of Simis
on general binary forms, based on work of Huckaba{Marley and on a theorem concerning the
Ratli {Rush ltration. Still within this frame, one states a couple of stronger conjectures that
imply Simis conjecture, along with some solid evidence. / Este trabalho versa sobre a algebra de Rees de um ideal quase intersec cão completa, de cocomprimento
nito, gerado por formas de mesmo grau em um anel de polinômios sobre um
corpo. Considera-se duas situa c~oes inteiramente diversas: na primeira, as formas s~ao mon^omios
em um n umero qualquer de vari aveis, enquanto na segunda, s~ao formas bin arias gerais. O
objetivo essencial em ambos os casos e obter a profundidade da algebra de Rees. E conhecido
que tal algebra e raramente Cohen{Macaulay (isto e, de profundidade m axima). Assim, a quest~ao
que permanece e qua o distante são do caso Cohen{Macaulay. No caso de monômios prova-se,
mediante certa restri cão, uma conjectura de Vasconcelos no sentido de que a algébra de Rees e
quase Cohen {Macaulay. No outro caso extremo, estabelece-se uma prova de uma conjectura de
Simis sobre formas bin arias gerais, baseada no trabalho de Huckaba{Marley e em um teorema
sobre a ltera cão de Ratli {Rush. Al em disso, apresenta-se um par de conjecturas mais fortes
que implicam a conjectura de Simis, juntamente com uma evidência s olida.
|
Page generated in 0.0553 seconds