Spelling suggestions: "subject:"reentrainment"" "subject:"reentrainement""
1 |
Reentrainment of Submicron Solid ParticlesMortazavi, Ramin 01 January 2005 (has links)
In this work, an experimental method is developed to study the effects of particle size, flow rate, pulsation, particle/substrate material, and temperature on the short-term reentrainment of submicron particles. The particles tested are in the size range of 10-900 nm and are deposited by wetting the inside of capillary tubes with a liquid suspension. The tubes are then dried in a desiccator. The particles are reentrained under turbulent dry air flow conditions and a condensation particle counter is used to measure the number of entrained particles.There has been very limited work done with nanoscale particles in general and no previous experimental work has reported about this particular parameter set. In order to interpret the data, a bimodal lognormal probability density for the ratio of adhesion force to removal forces is suggested. The majority of particles is attached to the surface by strong forces and cannot be entrained. However, a small fraction of particles, called loose particles, is attached to the surface by much smaller forces. Based on experimental data, an analytical equation for the fraction of loose particles in terms of a dimensionless force is developed. This dimensionless force is a function of particle size and gas flow rate. The temporal variations of fraction of deposited particles are calculated by incorporating the fraction of loose particles with the model of Wen and Kasper (1989).The experimental data confirmed the theoretical expectation that entrainment strongly depends on particle size and decreases as the size of the particle decreases. Both higher flow rates and pulsation of the flow increase the entrainment. Pulsation causes the distribution of forces to broaden. It is shown that the effect of particle/substrate material on entrainment can be predicted by the compound Hamaker constant provided that the morphology and the roughness of the system remain the same. Otherwise, the effect of roughness or morphology may override the effect of Hamaker constant.
|
2 |
Déposition et réenvol de spores fongiques : contribution à la compréhension du risque nosocomial aérotransmis / Fungal spore deposition and removal : Understanding the airborne nosocomial riskMetahni, Amine 21 December 2012 (has links)
Les spores fongiques sont à l'origine d'infections nosocomiales affectant le pronostic vital de patients immunodéprimés, et peuvent se transmettre par l'air. C'est pourquoi nous nous sommes intéressé à la déposition et au réenvol de spores d'"Aspergillus", responsables de pathologies gravissimes comme l'aspergillose pulmonaire invasive. Nous avons lors de nos expérimentations utilisé deux méthodes d'aérosolisation : le nébuliseur Collison standard, nécessitant la mise en solution des spores, ainsi qu'un prototype permettant de souffler directement sur les cultures fongiques Ceci nous a permis de mesurer la vitesse de sédimentation des spores, et d'évaluer l'efficacité et la rémanence de traitements fongicides en utilisant un protocole original mettant en œuvre des conditions réalistes.Un dispositif expérimental a été mis au point afin de soumettre des spores déposées sur une surface à un flux d'air tangentiel, et de filmer leur réenvol ( http://tinyurl.com/bla9ynz ), et un critère prédictif théorique de détachement a été exhibé. Des simulations numériques de l'écoulement autour de sphères idéales ont complété cette étude en nous donnant accès à des paramètres critiques inaccessibles expérimentalement.Nous avons finalement appliqué les résultats de nos investigations à la problématique des infections nosocomiales aérotransmises, et découvert que les ventilateurs de refroidissement d'appareils électroniques sont un réservoir de pathogènes et une source de contamination croisée potentielle. Des expériences en milieu contrôlé associées à une campagne de prélèvements en milieu hospitalier ont mis à jour ce nouveau et important risque de contamination. / Fungal spores are a leading cause of lethal nosocomial infections affecting immunocompromised patients, and can be transmitted through the air. As such, we have studied the deposition and re-entrainment of "Aspergillus" fungal spores, which are responsible for invasive pulmonary aspergillosis, a severe disease with a high mortality rate among immunocompromised populations.In our studies two methods of fungal spore aerosolization are used; standard nebulization, and dry blowing using a homemade device. This enabled us to measure the spore settling velocity and to assess the efficiency of fungicide surface treatments using a newly developed test under realistic conditions. These tests have allowed us to quantify different surface treatment efficiencies and established their persistence.An experimental set-up has also been developed to expose spores deposited on a surface to a tangential flow, and to observe and record their removal ( http://tinyurl.com/bla9ynz ). These studies have lead to theoretical criteria for spore detachment. Furthermore, computational fluid dynamic simulations around ideal spherical particles exposed to a tangential flow were used to determine critical parameters needed to estimate particle detachment.Lastly, we have applied our findings to nosocomial infection concerns in the hospital environment and discovered that electronic fans are a pathogen reservoir and potential cross-contamination source. Systematic testing together with random sampling in hospital wards has revealed a new and important contamination risk.
|
Page generated in 0.0776 seconds