Spelling suggestions: "subject:"refractive index 1ieasurement"" "subject:"refractive index remeasurement""
1 |
The precise determination of refractometric parameters for atmospheric gasesBirch, K. P. January 1988 (has links)
No description available.
|
2 |
REFRACTIVE INDEX MEASUREMENTS OF MAGNESIUM OXIDE, SAPPHIRE, AND AMTIR-1 AT CRYOGENIC TEMPERATURESNofziger, Michael James January 1985 (has links)
No description available.
|
3 |
Determination of three dimensional refractive indices and absorption coefficients of anisotropic polymer films with prism wave-guide couplerLiu, Tao January 1999 (has links)
No description available.
|
4 |
Design and analysis of fiber-optic Mach-Zehnder interferometers for highly sensitive refractive index measurementAhsani, Vahid 05 May 2020 (has links)
The development of reliable, affordable, and efficient sensors is a key step forward in providing tools for efficient monitoring of critical environmental parameters. Fiber-optic sensors are already widely used in various industrial sensing fields. They have proven themselves reliable in harsh environments and can measure different physical quantities, such as temperature, pressure, strain, refractive index (RI), and humidity. Fiber-optic Mach-Zehnder Interferometer (MZI) is a well-studied optical fiber interferometer that has proven capacity for sensing ambient refractive index.
In this dissertation, we present Fiber Bragg grating (FBG) embedded in a microfiber Mach-Zehnder Interferometer designed for sensing temperature and refractive index. The MZI is constructed by splicing a short length of 40-μm-diameter microfiber between standard single mode fibers. A one-millimeter-long FBG is then written in the microfiber using a direct, point-by-point, ultrafast laser inscription method. The microfiber MZI shows only moderate sensitivity to ambient refractive index and temperature changes. In contrast, the microfiber FBG is insensitive to ambient refractive index change, while it exhibits typical sensitivity to temperature variation. These distinct characteristics of the FBG and MZI sensors enable the simultaneous measurement of refractive index and temperature as well as temperature compensation in ambient refractive index measurement.
Further, we report the use of a fiber-optic Mach-Zehnder Interferometer to measure core refractive index changes written by femtosecond laser irradiation. The core-offset interferometer was constructed by splicing a lightly misaligned stub of standard single-mode fiber between the device’s lead-in and lead-out optical fibers. When the core refractive index of an in-fiber interferometer is altered, that process changes the phase of the core light. Since the phase of light propagating in the cladding (reference arm) remains unchanged, the transmission fringe pattern of the interferometer undergoes a spectral shift. In the present research, that spectral shift was used to quantify the effective core refractive index change in a standard single-mode fiber.
In addition, we designed and developed a custom flame-based tapering machine that is used to fabricate miniaturized Mach–Zehnder interferometers (MZIs) using sharply tapered photonic crystal fiber (PCF). This technique produces sensors capable of highly sensitive ambient refractive index (RI) measurements. The sensor is fabricated by fusion splicing a small stub of PCF between standard single-mode fibers with fully collapsed air holes of the PCF in a splicing region. Tiny flame geometry enables the sharp tapering of the PCF, resulting in a short fiber length and high RI sensitivity. It appears that sharp tapering has a great impact on RI sensitivity enhancement, when compared with methods that decrease taper waist diameter. The tapering technique is further used to construct the Mach-Zehnder Interferometer-based fiber-optic refractive index (RI) sensor by uniformly tapering standard single mode fibers (SMF) for RI measurement. The fabricated MZI device does not require any splicing of fibers and shows excellent RI sensitivity. / Graduate
|
5 |
Development of Fiber Optic Sensors using Femtosecond Laser for Refractive Index and Temperature MeasurementsAhmed, Farid 24 December 2015 (has links)
The development and transition of optical fiber sensors from experimental stage to practical applications largely depends on manufacturing cost and simplicity. To date, in-fiber grating sensors are largely manufactured by ultraviolet lasers despite higher fabrication cost and complexity. Besides, ultraviolet radiation can only write gratings in doped fibers. Therefore, reaping the benefits of existing fibers such as pure silica fiber, photonics crystal fibers etc. cannot be achieved using this technique. In contrast, uses of ultra-fast lasers have the potential to eliminate or minimize those drawbacks. However, extensive fabrication and packaging research is required for ultrafast laser technology to mature and offer grating based sensors fabrication in industrial scale.
This dissertation presents design and fabrication of fiber optic sensors using femtosecond laser for measurement of ambient refractive index and temperature. The femtosecond laser operating at 780 nm with pulse duration of 172 fs and pulse repetition rate of 1 kHz is used to study bulk index modification and fabricate fiber long period and short period gratings. Effective and reliable fabrication of in-fiber gratings requires spatial control of refractive index written in optical fiber. With an aim to better control spatial index modulation in direct ultrafast writing, primary focus of this work is given to write single-shot submicron periodic voids in bulk glass. Femtosecond pulse filamentation in glass is studied to understand the morphology of bulk index change written by ultrashort pulses. Laser writing parameters (such as beam diameter, pulse energy, scanning speed, depth of focus, etc.) are then further tuned to write pulse filamentation induced refractive index change in optical fibers suitable for fiber grating fabrication. In order to design and tailor grating’s spectrum, measurement of in-fiber index is introduced in this work. We propose fiber Bragg grating based Fabry-Perot cavity structure (cavity length, L= 10 mm) to characterize femtosecond pulse filamentation induced refractive index change in the core of standard SMF. In addition, Mach-Zehnder interferometer (MZI) is proposed as an alternative yet effective and low cost tool to measure in-fiber index change. Comsol simulation is used to validate the quantification of index change. Measured index change is used in Optiwave simulation to design fiber long period gratings in standard telecommunication and pure silica core fibers. To increase fabrication reliability, we introduce inscription of helical long period gratings using a custom made rotary stage. Tapered photonic crystal and microfiber based Mach-Zehnder interferometer is also investigated for ambient refractive index measurement. Miniature fiber Bragg grating written in microfiber Mach-Zehnder interferometer is used in this work for multi-parameter sensing as well as temperature compensated refractive index sensing. Microfiber Bragg gratings buried in materials of higher thermal expansion coefficient is also proposed to significantly enhance temperature sensitivity. / Graduate / 0548, 0794, 0775 / fariduvic@gmail.com
|
6 |
Advances in opto-electronic oscillator operation for sensing and component characterization / Nouvelles avancées dans la mise en œuvre d’un oscillateur optoélectronique et de ses applications dans le domaine des capteurs et de la caractérisation de composantsPham, Toan Thang 26 March 2015 (has links)
L'oscillateur optoélectronique (OEO) a été introduit pour la première fois en 1996 par S. Yao et L. Maleki, en tant qu'oscillateur microondes à très faible bruit de phase et obtenu par synthèse directe. Les développements de l'OEO concernent les applications en photonique microondes, télécommunications optiques, radar et traitement du signal. Mais l'OEO devrait aussi pouvoir être utilisé dans le domaine des capteurs. Dans cette thèse nous étudiants plusieurs aspects de l'OEO pour son application à la mesure d'indice de réfraction d'un liquide. Compte tenu de sa structure l'OEO dépend fortement des conditions ambiantes d'utilisation. S'il n'est pas bien optimisé ni contrôlé, il ne peut pas fonctionner correctement sur une longue durée. Nous avons étudié les influences de la température sur le modulateur électrooptique (EOM) et sur le comportement global de l'OEO. Un contrôle de température réduit de façon significative le phénomène de dérive de l'EOM. Afin de la supprimer complètement, nous avons mis au point une instrumentation construite autour d'une carte DSP, permettant de détecter et compenser la dérive du point de fonctionnement optique de l'EOM tout en contrôlant simultanément sa température. Une première technique est basée sur un signal de test, basse fréquence, appliqué à l'électrode DC du modulateur. Une deuxième solution consiste à travailler sur la puissance optique en sortie du modulateur. En combinant les deux on peut profiter des avantages de ces deux méthodes. Utilisant ainsi l'OEO nous avons testé plusieurs configurations pour mesurer l'indice de réfraction de quatre solutions chimiques bien connues, nous avons obtenu une variance de 3 pour mille. Les résultats sont en assez bon accord avec les publications correspondantes. Enfin nous avons aussi introduit une nouvelle méthode pour améliorer les mesures d'indice de réfraction faites à long terme en suivant, grâce à un analyseur vectoriel de réseau, les évolutions au cours du temps du temps de propagation dans la fibre optique. En introduisant à partir de cette mesure une correction aux mesures de la fréquence d'oscillation il est possible de réduire les fluctuations de cette fréquence à seulement 606 Hz, sur une durée de 62 h, ce que l'on peut comparer aux 8 GHz de l'oscillateur. Ainsi le rapport signal à bruit, peut être grandement amélioré lors de la mesure d'indice de réfraction et il doit être possible de diminuer la limite de détection des variations de l'indice de réfraction au cours du temps. / The optoelectronic oscillator (OEO) was first introduced in 1996 by S. Yao and L. Maleki as a very low phase noise microwave oscillator working in direct synthesis. The OEO developments concern applications in microwave photonics, optical telecommunication, radar and high speed signal processing systems but it should also be used in the sensing domain. In this thesis, we study several aspects to apply the OEO to liquid refractive index measurement. Because of its structure the OEO is very dependent on the ambient conditions. If the OEO is not optimized and controlled, it cannot operate well for long duration. We have analyzed the influences of temperature on the electrooptic modulator (EOM) and the global OEO behavior. Temperature control can significantly reduce the drift phenomena of the EOM. In order to totally remove this drift, we have developed a complete digital system, based on a DSP kit, to detect and compensate automatically the EOM optical bias point drift and to control simultaneously its temperature. The first technique is based on a dither signal at low frequency, injected to DC electrode of the EOM. The second one is based on the average optical output power of the EOM. A combination of these two techniques can take advantages from both of them. Using like that the OEO, we have tested several configurations to measure the refractive index of four classical chemical solutions leading to a standard deviation of 3 per thousand. The results are in rather good agreement with previous publications. Finally, we have introduced a new method to improve the long-term refractive index measurement by monitoring, with a vector network analyzer, the variations of the optical delay in the fiber loop of the OEO. Introducing by this way a correction to the long-term frequency measurement it is possible to reduce the oscillation frequency fluctuations to only 606 Hz, compared to the 8 GHz of the oscillator, for a duration of 62 hours. Therefore the signal-to-noise ratio in the refractive index measurement can be enhanced and so the detection resolution of the refractive index variations during time.
|
7 |
"Phase-Correlation Based Displacemnt-Metrology" - Few InvestigationsDiwan, C Yogesh 07 1900 (has links) (PDF)
No description available.
|
8 |
Measurements of the complex refractive index of volcanic ashReed, Benjamin Edward January 2016 (has links)
This thesis describes laboratory measurements of the complex refractive index of volcanic ash particles. These measurements are needed to model the radiative impact of volcanic ash, vital for accurate satellite remote sensing. Three experimental methods have been developed, and the results for the complex refractive index and optical properties of a wide range of volcanic ash samples are presented. Measurements were made of the spectral transmission of radiation through suspended volcanic ash particles inside an aerosol cell, using a Fourier transform spectrometer at infrared wavelengths and two diffraction grating spectrometers covering ultraviolet, visible, and near-infrared wavelengths. In addition to the optical measurements, a suite of sampling and sizing instruments were connected downstream of the aerosol cell to measure the particle size distribution. The method was calibrated using two quartz samples. Mass extinction coefficients for nine volcanic ash samples, at 0.3-14 μm, are presented and show considerable variation. These variations are linked to the composition of the samples, measured using X-ray fluorescence (XRF) analysis. The complex refractive index, at 0.3-14 μm, of the two quartz samples and two samples of volcanic ash from the 2010 Eyjafjallajökull eruption were retrieved from the extinction measurements. The forward model used Mie theory and a classical damped harmonic oscillator (CDHO) model to represent the complex refractive index of the samples in terms of a finite set of band parameters, as well as the real refractive index of the sample in the small wavelength limit. Previous studies have shown that there is a redundancy in the retrievals between the band strength parameters and the real refractive index in the small wavelength limit, which can lead to spurious values for the retrieved complex refractive index. This problem was overcome by using an independent measurement of the real refractive index at a visible wavelength, to constrain the model parameter of the real refractive index in the short wavelength limit. Independent measurements of the complex refractive index at visible wavelengths are also important because the extinction produced at these wavelengths is highly sensitive to the particle size distribution, and any uncertainty in the measured size distribution will contribute to significant systematic error in the refractive index retrieved from extinction. The retrieved spectral complex refractive index of Eyjafjallajökull ash was applied using the ORAC retrieval scheme to measurements of the 2010 Eyjafjallajökull eruptionmade by theMODIS instrument aboard NASA's Terra satellite. Significant difference were found in the retrieved plume parameters of optical path, effective radius, and plume altitude, compared to assuming a literature measurement for the refractive index of pumice. For three discrete visible wavelengths (450, 546.7, and 650 nm) an optical microscope was used to make measurements of the complex refractive index of the volcanic ash samples. The long-established Becke line method was used to measure the real refractive index of the samples. For the imaginary refractive index, a new and novelmethod was developed involving measurements of the attenuation of light in individual particles. A strong linear correlation was found between the SiO<sub>2</sub> content of the samples and both their real and imaginary refractive indices at the visible wavelengths investigated. Furthermore, from the XRF compositional analysis of the samples values were calculated for the ratio of non-bridging oxygen atoms per tetrahedral cation (NBO/T), and it was found that NBO/T was an even stronger predictor of real refractive index at visible wavelengths. The optical microscope measurements could only be applied to particles with a radius larger than 10 μm. A new refractometer method was investigated for retrieving the real refractive index of submicron particles from colloidal reflectance measurements close to the critical angle in an internal reflection configuration. A coherent scattering model (CSM) was used to model the coherent reflection from a half-space of monodisperse or polydisperse particles, and a simple extension of the model is presented to properly account for the modified size distribution at the interface in an internal reflection set-up. A rigorous sensitivity analysis was performed to determine how experimental uncertainties propagate into uncertainty associated with the retrieved real refractive index, and the uncertainty due to non-spherical effects was estimated using T-matrix methods. Experimental reflectance data at a wavelength of 635 nm were obtained for spherical monodisperse polystyrene calibration particles, a polydisperse sand sample, and a polydisperse volcanic ash sample. The retrieved values for the real refractive index agreed, within propagated uncertainties, with values measured using other techniques. The method is shown to be a viable technique for measuring the real refractive index of small quantities of submicron particles, and can also retrieve the concentration and size of particles.
|
Page generated in 0.1164 seconds