Spelling suggestions: "subject:"degression tre"" "subject:"aregression tre""
41 |
L’arbre de régression multivariable et les modèles linéaires généralisés revisités : applications à l’étude de la diversité bêta et à l’estimation de la biomasse d’arbres tropicauxOuellette, Marie-Hélène 04 1900 (has links)
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude.
Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse.
Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta.
Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle.
D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres. / In ecology, in ecosystem services studies for example, descriptive, explanatory and predictive modelling all have relevance in different situations. Precise circumstances may require one or the other type of modelling; it is important to choose the method properly to insure that the final model fits the study’s goal.
In this thesis, we first explore the explanatory power of the multivariate regression tree (MRT). This modelling technique is based on a recursive bipartitionning algorithm. The tree is fully grown by successive bipartitions and then it is pruned by resampling in order to reveal the tree providing the best predictions. This asymmetric analysis of two tables produces homogeneous groups in terms of the response that are constrained by splitting levels in the values of some of the most important explanatory variables.
We show that to calculate the explanatory power of an MRT, an appropriate adjusted coefficient of determination must include an estimation of the degrees of freedom of the MRT model through an algorithm. This estimation of the population coefficient of determination is practically unbiased. Since MRT is based upon discontinuity premises whereas canonical redundancy analysis (RDA) models continuous linear gradients, the comparison of their explanatory powers enables one to distinguish between those two patterns of species distributions along the explanatory variables. The extensive use of RDA for the study of beta diversity motivated the comparison between its explanatory power and that of MRT.
In an explanatory perspective again, we define a new procedure called a cascade of multivariate regression trees (CMRT). This procedure provides the possibility of computing an MRT model where an order is imposed to nested explanatory hypotheses. CMRT provides a framework to study the exclusive effect of a main and a subordinate set of explanatory variables by calculating their explanatory powers. The interpretation of the final model is done as in nested MANOVA. New information may arise from this analysis about the relationship between the response and the explanatory variables, for example interaction effects between the two explanatory data sets that were not evidenced by the usual MRT model.
On the other hand, we study the predictive power of generalized linear models (GLM) to predict individual tropical tree biomass as a function of allometric shape variables. Particularly, we examine the capacity of gaussian and gamma error structures to provide the most precise predictions. We show that for a particular species, gamma error structure is superior in terms of predictive power. This study is part of a practical framework; it is meant to be used as a tool for managers who need to precisely estimate the amount of carbon recaptured by tropical tree plantations. Our conclusions could be integrated within a program of carbon emission reduction by land use changes.
|
42 |
Modelos para relacionar variáveis de solos e área basal de espécies florestais em uma área de vegetação natural / Models to relate variable soil and basal area of forest species in an area of natural vegerationGrego, Simone 08 October 2014 (has links)
O padrão espacial de ocorrência de atributos de espécies florestais, tal como a área basal das árvores, pode fornecer informações para o entendimento da estrutura da comunidade vegetal. Uma vez que fatores ambientais podem influenciar tanto o padrão espacial de ocorrência quanto os atributos das espécies em florestas nativas. Desse modo, investigar a relação entre as características ambientais e o padrão espacial de espécies florestais pode ajudar a entender a dinâmica das florestas. Especificamente, neste trabalho, o objetivo é avaliar métodos estatísticos que permitam identificar quais atributos do solo são capazes de explicar a variação da área basal de cada espécie de árvore. A área basal foi considerada como variável resposta e como covariáveis, um grande número de atributos físicos e químicos do solo, medidos em uma malha de localizações cobrindo a área de estudo. Foram revisados e utilizados os métodos de regressão linear múltipla com método de seleção stepwise, modelos aditivos generalizados e árvores de regressão. Em uma segunda fase das análises, adicionou-se um efeito espacial aos modelos, com o intuito de verificar se havia ainda padrões na variabilidade, não capturados pelos modelos. Com isso, foram considerados os modelos autoregressivo simultâneo, condicional autoregressivo e geoestatístico. Dado o grande número de atributos do solo, as análises foram também conduzidas utilizando-se as covariáveis originais, fatores identificados em uma análise fatorial prévia dos atributos de solo. A seleção de modelos com melhor ajuste foi utilizada para identificar os atributos de solo relevantes, bem como a presença e melhor descrição de padrões espaciais. A área de estudo foi a Estação Ecológica de Assis, da Unidade de Conservação do Estado de São Paulo em parcelas permanentes, dentro do projeto \"Diversidade, Dinâmica e Conservação em Florestas do Estado de São Paulo: 40 ha de parcelas permanentes\", do programa Biota da FAPESP. As análises reportadas aqui se referem à área basal das espécies Copaifera langsdorffii, Vochysia tucanorum e Xylopia aromatica. Com os atributos de solo reduzidos e consistentemente associados à área basal, a declividade, altitude, saturação por alumínio e potássio mostraram-se relevantes para duas das espécies. Resultados obtidos mostraram a presença de um padrão na variabilidade, mesmo levando-se em consideração os efeitos das covariáveis, ou seja, os atributos do solo explicam parcialmente a variabilidade da área basal, mas existe um padrão que ocorre no espaço que não é capturado por essas covariáveis. / The spatial pattern of occurrenceis of forest species and their attributes, such as the basal area of trees, can provide information for understanding the structure of the vegetable community. Considering the environmental factors can influence the spatial pattern of occurrences of species in native forests and related attributes, describing relationship between environmental characteristics and spatial pattern of forest species can be associated with the dynamics of forests. The objective of the present study is to assess different statistical methods used to identify which soil attributes are associated with the basal area of each tree selected species. The basal area was considered as the response variable and the covariates are given by a large number of physical and chemical attributes of the soil, measured at a grid of locations covering the study area. The methods considered are the multiple linear regression with stepwise model selection, generalized additive models and regression trees. Spatial effects were added to the models, in order to ascertain whether there is residual spatial patterns not captured by the covariates. Thus, simultaneous autoregressive model, autoregressive conditional and geostatistical were considered. Considering the large number of soil attributes, analysis were were conducted both ways, using the original covariates, and using factors identified in a preliminar factor analysis of the soil attributes. Model selection was used to identify the relevant attributes of soil as well as the presence and better description of spatial patterns. The study area was the Ecological Station of Assis, the Conservation Unit of the State of São Paulo in permanent plots within the \"Diversity Dynamics and Conservation Forests in the State of São Paulo: 40 ha of permanent plots\" project, under the research project FAPESP biota. The analyzes reported here refer to the basal area of the species Copaifera langsdorffii, Vochysia tucanorum and Xylopia aromatica. Results differ among the considered methods reinforcing the reccomendation of considering differing modeling strategies. Covariates consistently associated with basal area are slope, altitude and aluminum saturation, potassium, relevant to at least two of the species. Results obtained showed the presence of patterns in residual variability, even taking into account the effects of covariates. The soil characteristics only partially explain the variability of the basal area and there are spatial patterns not captured by these covariates.
|
43 |
Modelling Implied Volatility of American-Asian Options : A Simple Multivariate Regression ApproachRadeschnig, David January 2015 (has links)
This report focus upon implied volatility for American styled Asian options, and a least squares approximation method as a way of estimating its magnitude. Asian option prices are calculated/approximated based on Quasi-Monte Carlo simulations and least squares regression, where a known volatility is being used as input. A regression tree then empirically builds a database of regression vectors for the implied volatility based on the simulated output of option prices. The mean squared errors between imputed and estimated volatilities are then compared using a five-folded cross-validation test as well as the non-parametric Kruskal-Wallis hypothesis test of equal distributions. The study results in a proposed semi-parametric model for estimating implied volatilities from options. The user must however be aware of that this model may suffer from bias in estimation, and should thereby be used with caution.
|
44 |
L’arbre de régression multivariable et les modèles linéaires généralisés revisités : applications à l’étude de la diversité bêta et à l’estimation de la biomasse d’arbres tropicauxOuellette, Marie-Hélène 04 1900 (has links)
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude.
Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse.
Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta.
Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle.
D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres. / In ecology, in ecosystem services studies for example, descriptive, explanatory and predictive modelling all have relevance in different situations. Precise circumstances may require one or the other type of modelling; it is important to choose the method properly to insure that the final model fits the study’s goal.
In this thesis, we first explore the explanatory power of the multivariate regression tree (MRT). This modelling technique is based on a recursive bipartitionning algorithm. The tree is fully grown by successive bipartitions and then it is pruned by resampling in order to reveal the tree providing the best predictions. This asymmetric analysis of two tables produces homogeneous groups in terms of the response that are constrained by splitting levels in the values of some of the most important explanatory variables.
We show that to calculate the explanatory power of an MRT, an appropriate adjusted coefficient of determination must include an estimation of the degrees of freedom of the MRT model through an algorithm. This estimation of the population coefficient of determination is practically unbiased. Since MRT is based upon discontinuity premises whereas canonical redundancy analysis (RDA) models continuous linear gradients, the comparison of their explanatory powers enables one to distinguish between those two patterns of species distributions along the explanatory variables. The extensive use of RDA for the study of beta diversity motivated the comparison between its explanatory power and that of MRT.
In an explanatory perspective again, we define a new procedure called a cascade of multivariate regression trees (CMRT). This procedure provides the possibility of computing an MRT model where an order is imposed to nested explanatory hypotheses. CMRT provides a framework to study the exclusive effect of a main and a subordinate set of explanatory variables by calculating their explanatory powers. The interpretation of the final model is done as in nested MANOVA. New information may arise from this analysis about the relationship between the response and the explanatory variables, for example interaction effects between the two explanatory data sets that were not evidenced by the usual MRT model.
On the other hand, we study the predictive power of generalized linear models (GLM) to predict individual tropical tree biomass as a function of allometric shape variables. Particularly, we examine the capacity of gaussian and gamma error structures to provide the most precise predictions. We show that for a particular species, gamma error structure is superior in terms of predictive power. This study is part of a practical framework; it is meant to be used as a tool for managers who need to precisely estimate the amount of carbon recaptured by tropical tree plantations. Our conclusions could be integrated within a program of carbon emission reduction by land use changes.
|
45 |
中国語母話者の日本学習によるポライトネスの構造と意識の変容 : 依頼に対する断り難さに着目してブラーエヴァ, マリア エドアルドヴナ, BULAEVA, Maria Eduardovna, TAMAOKA, Katsuo, HUANG, Yulei, 玉岡, 賀津雄, 黄, 郁蕾 05 December 2014 (has links)
No description available.
|
46 |
[en] ASYMMETRIC EFFECTS AND LONG MEMORY IN THE VOLATILITY OF DJIA STOCKS / [pt] EFEITOS DE ASSIMETRIA E MEMÓRIA LONGA NA VOLATILIDADE DE AÇÕES DO ÍNDICE DOW JONESMARCEL SCHARTH FIGUEIREDO PINTO 16 October 2006 (has links)
[pt] volatilidade dos ativos financeiros reflete uma reação
prosseguida dos agentes a choques no passado ou alterações
nas condições dos mercados determinam mudanças na dinâmica
da variável? Enquanto modelos fracionalmente integrados
vêm sendo extensamente utilizados como uma descrição
adequada do processo gerador de séries de volatilidade,
trabalhos teóricos recentes indicaram que mudanças
estruturais podem ser uma relevante alternativa empírica
para o fato estilizado de memória longa. O presente
trabalho investiga o que alterações nos mercados
significam nesse contexto, introduzindo variações de
preços como uma possível fonte de mudanças no nível da
volatilidade durante algum período, com grandes quedas
(ascensões) nos preços trazendo regimes persistentes de
variância alta (baixa). Uma estratégia de modelagem
sistemática e flexível é estabelecida para testar e
estimar essa assimetria através da incorporação de
retornos acumulados passados num arcabouço não-linear. O
principal resultado revela que o efeito é altamente
significante - estima-se que níveis de volatilidade 25% e
50% maiores estão associados a quedas nos preços em
períodos curtos - e é capaz de explicar altos valores de
estimativas do parâmetro de memória longa. Finalmente,
mostra-se que a modelagem desse efeito traz ganhos
importantes para aplicações fora da amostra em períodos de
volatilidade alta. / [en] Does volatility reflect lasting reactions to past shocks
or changes in the
markets induce shifts in this variable dynamics? In this
work, we argue
that price variations are an essential source of
information about multiple
regimes in the realized volatility of stocks, with large
falls (rises) in prices
bringing persistent regimes of high (low) variance. The
study shows that
this asymmetric effect is highly significant (we estimate
that falls of different
magnitudes over less than two months are associated with
volatility levels
20% and 60% higher than the average of periods with stable
or rising prices)
and support large empirical values of long memory
parameter estimates.
We show that a model based on those findings significantly
improves out of
sample performance in relation to standard methods
{specially in periods
of high volatility.
|
47 |
[en] APPLICATION OF NONLINEAR MODELS FOR AUTOMATIC TRADING IN THE BRAZILIAN STOCK MARKET / [pt] APLICAÇÃO DE MODELOS NÃO LINEARES EM NEGOCIAÇÃO AUTOMÁTICA NO MERCADO ACIONÁRIO BRASILEIROTHIAGO REZENDE PINTO 16 October 2006 (has links)
[pt] Esta dissertação tem por objetivo comparar o desempenho de
modelos não
lineares de previsão de retornos em 10 ativos do mercado
acionário brasileiro. Entre os modelos escolhidos, pode-se
citar o STAR-Tree, que combina
conceitos da metodologia STAR (Smooth Transition
AutoRegression) e do
algoritmo CART (Classification And Regression Trees),
tendo como resultado final uma regressão com transição
suave entre múltiplos regimes. A
especificação do modelo é feita através de testes de
hipótese do tipo Multiplicador de Lagrange que indicam o
nó a ser dividido e a variável explicativa
correspondente. A estimação dos parâmetros é feita pelo
método de Mínimos
Quadrados Não Lineares para determinar o valor dos
parâmetros lineares
e não lineares. Redes Neurais, modelos ARMAX (estes
lineares) e ainda o
método Naive também foram incluídos na análise. Os
resultados das previsões foram avaliados a partir de
medidas estatísticas e financeiras e se
basearam em um negociador automático que informa o
instante correto de
assumir uma posição comprada ou vendida em cada ativo. Os
melhores desempenhos foram alcançados pelas Redes Neurais,
pelos modelos ARMAX
e pela forma de previsão ARC (Adaptative Regime
Combination) derivada
da metodologia STAR-Tree, sendo ambos ainda superiores ao
retorno das
ações durante o período de teste / [en] The goal of this dissertation is to compare the
performance of non linear
models to forecast return on 10 equities in the Brazilian
Stock Market.
Among the chosen ones, it can be cited the STAR-Tree,
which matches
concepts from the STAR (Smooth Transition AutoRegression)
methodology
and the CART (Classification And Regression Trees)
algorithm, having
as the resultant structure a regression with smooth
transition among
multiple regimes. The model specification is done by
Lagrange Multiplier
hypothesis tests that indicate the node to be splitted and
the corresponding
explanatory variable. The parameter estimation is done by
the Non Linear
Least Squares method that determine the linear and non
linear parameters.
Neural Netwoks, ARMAX models (these ones linear) and the
Naive method
were also included in the analysis. The forecasting
results were calculated
using statistical and financial measures and were based on
an automatic
negociator that signaled the right instant to take a short
or a long position in
each stock. The best results were reached by the Neural
Networks, ARMAX
models and ARC (Adaptative Regime Combination )
forecasting method
derived from STAR-Tree, with all of them performing better
then the equity
return during the test period.
|
48 |
[en] TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS / [pt] MODELOS DE REGRESSÃO COM TRANSIÇÃO SUAVE ESTRUTURADOS POR ÁRVORESJOEL MAURICIO CORREA DA ROSA 22 July 2005 (has links)
[pt] O objetivo principal desta tese introduzir um modelo
estruturado por árvores
que combina aspectos de duas metodologias: CART
(Classification and Regression
Tree) e STR (Smooth Transition Regression). O modelo aqui
denominado
STR-Tree. A idéia especificar um modelo não-linear
paramétrico através da estrutura
de uma árvore de decisão binária. O modelo resultante pode
ser analisado
como uma regressão com transição suave entre múltiplos
regimes. As decisões
sobre as divisões dos nós são inteiramente baseadas em
testes do tipo Multiplicadores
de Lagrange. Uma especificação alternativa baseada em
validação cruzada
também utilizada. Um experimento de Monte Carlo utilizado
para avaliar o
desempenho da metodologia proposta comparando-a com outras
técnicas comumente
utilizadas. Como resultado verifica-se que o modelo STR-
Tree supera o
tradicional CART quando seleciona a arquitetura de árvores
simuladas. Além do
mais, utilizar testes do tipo Multiplicadores de Lagrange
gera resultados melhores
do que procedimentos de validação cruzada. Quando foram
utilizadas bases
de dados reais, o modelo STR-Tree demonstrou habilidade
preditiva superior ao
CART. Através de uma aplicação, extende-se a metodologia
para a análise de
séries temporais. Neste caso, o modelo denominado STAR-
Tree, sendo obtido
através de uma árvore de decisão binária que ajusta
modelos autoregressivos de
primeira ordem nos regimes. A série de retornos da taxa de
câmbio Euro/Dólar
foi modelada e a capacidade preditiva e o desempenho
financeiro do modelo
foi comparado com metodologias padrões como previsões
ingênuas e modelos
ARMA. Como resultado obtido um modelo parcimonioso que
apresenta desempenho
estatístico equivalente às estratégias convencionais,
porém obtendo
resultados financeiros superiores. / [en] He main goal of this Thesis is to introduce a tree-
structured model that combines
aspects from two methodologies: CART (Classification and
Regression Trees)
and STR (Smooth Transition Regression). The model is
called STR-Tree, The
idea is to specify a nonlinear parametric model through
the structure of a binary
decision tree. The resulting modelo can be analyzed as a
smooth transition
regression model with multiple regimes. The decisions for
splitting the nodes
of the tree are entirely based on Lagrange Multipliers
tests. An alternative
specification that uses cross- validation is also tried. A
Monte Carlo Experiment
is used to evaluate the performance of the proposed
methodology and to compare
with other techniques that are commonly used. The results
showed that the STRTree
model outperformed the traditional CART when specifying
the architecture
of a simulated tree. Moreover, the use of Lagrange
Multipliers tests gave better
results than a cross-validation procedure. After applying
the model to real
datasets, it could be seen that STR-Tree showed superior
predictive ability when
compared to CART. The idea was extended to time series
analysis through an
application. In this situation, we call the model as STAR-
Tree which is obtained
through a binary decision tree that fits first-order
autoregressive models for
different regimes. The model was fitted to the returns of
Euro/Dolar exchange
rate time series and then evaluated statistically and
financially. Comparing with
the naive approach and ARMA methodology, the STAR-Tree was
parsimonious
and presented statistical performance equivalent to
others. The financial results
were better than the others.
|
49 |
Modelos para relacionar variáveis de solos e área basal de espécies florestais em uma área de vegetação natural / Models to relate variable soil and basal area of forest species in an area of natural vegerationSimone Grego 08 October 2014 (has links)
O padrão espacial de ocorrência de atributos de espécies florestais, tal como a área basal das árvores, pode fornecer informações para o entendimento da estrutura da comunidade vegetal. Uma vez que fatores ambientais podem influenciar tanto o padrão espacial de ocorrência quanto os atributos das espécies em florestas nativas. Desse modo, investigar a relação entre as características ambientais e o padrão espacial de espécies florestais pode ajudar a entender a dinâmica das florestas. Especificamente, neste trabalho, o objetivo é avaliar métodos estatísticos que permitam identificar quais atributos do solo são capazes de explicar a variação da área basal de cada espécie de árvore. A área basal foi considerada como variável resposta e como covariáveis, um grande número de atributos físicos e químicos do solo, medidos em uma malha de localizações cobrindo a área de estudo. Foram revisados e utilizados os métodos de regressão linear múltipla com método de seleção stepwise, modelos aditivos generalizados e árvores de regressão. Em uma segunda fase das análises, adicionou-se um efeito espacial aos modelos, com o intuito de verificar se havia ainda padrões na variabilidade, não capturados pelos modelos. Com isso, foram considerados os modelos autoregressivo simultâneo, condicional autoregressivo e geoestatístico. Dado o grande número de atributos do solo, as análises foram também conduzidas utilizando-se as covariáveis originais, fatores identificados em uma análise fatorial prévia dos atributos de solo. A seleção de modelos com melhor ajuste foi utilizada para identificar os atributos de solo relevantes, bem como a presença e melhor descrição de padrões espaciais. A área de estudo foi a Estação Ecológica de Assis, da Unidade de Conservação do Estado de São Paulo em parcelas permanentes, dentro do projeto \"Diversidade, Dinâmica e Conservação em Florestas do Estado de São Paulo: 40 ha de parcelas permanentes\", do programa Biota da FAPESP. As análises reportadas aqui se referem à área basal das espécies Copaifera langsdorffii, Vochysia tucanorum e Xylopia aromatica. Com os atributos de solo reduzidos e consistentemente associados à área basal, a declividade, altitude, saturação por alumínio e potássio mostraram-se relevantes para duas das espécies. Resultados obtidos mostraram a presença de um padrão na variabilidade, mesmo levando-se em consideração os efeitos das covariáveis, ou seja, os atributos do solo explicam parcialmente a variabilidade da área basal, mas existe um padrão que ocorre no espaço que não é capturado por essas covariáveis. / The spatial pattern of occurrenceis of forest species and their attributes, such as the basal area of trees, can provide information for understanding the structure of the vegetable community. Considering the environmental factors can influence the spatial pattern of occurrences of species in native forests and related attributes, describing relationship between environmental characteristics and spatial pattern of forest species can be associated with the dynamics of forests. The objective of the present study is to assess different statistical methods used to identify which soil attributes are associated with the basal area of each tree selected species. The basal area was considered as the response variable and the covariates are given by a large number of physical and chemical attributes of the soil, measured at a grid of locations covering the study area. The methods considered are the multiple linear regression with stepwise model selection, generalized additive models and regression trees. Spatial effects were added to the models, in order to ascertain whether there is residual spatial patterns not captured by the covariates. Thus, simultaneous autoregressive model, autoregressive conditional and geostatistical were considered. Considering the large number of soil attributes, analysis were were conducted both ways, using the original covariates, and using factors identified in a preliminar factor analysis of the soil attributes. Model selection was used to identify the relevant attributes of soil as well as the presence and better description of spatial patterns. The study area was the Ecological Station of Assis, the Conservation Unit of the State of São Paulo in permanent plots within the \"Diversity Dynamics and Conservation Forests in the State of São Paulo: 40 ha of permanent plots\" project, under the research project FAPESP biota. The analyzes reported here refer to the basal area of the species Copaifera langsdorffii, Vochysia tucanorum and Xylopia aromatica. Results differ among the considered methods reinforcing the reccomendation of considering differing modeling strategies. Covariates consistently associated with basal area are slope, altitude and aluminum saturation, potassium, relevant to at least two of the species. Results obtained showed the presence of patterns in residual variability, even taking into account the effects of covariates. The soil characteristics only partially explain the variability of the basal area and there are spatial patterns not captured by these covariates.
|
50 |
R-ljud är hårda: slumpskogsanalys av sambandet mellan språkljud och betydelse i taktila adjektiv / R is for hard: random forest analysis of the association between sound and meaning in tactile adjectivesRåberg, Emil, Siljamäki, Mia January 2022 (has links)
Få studier om ljudsymbolik, d.v.s. kopplingen mellan ords form och betydelse, har baserats på statistisk analys. I denna studie använder vi random forests med måttet permutation variable importance för att utforska vilka fonem (språkljud) som är prevalenta i engelska ord som beskriver hårdhet eller mjukhet. Denna icke-parametriska maskininlärningsmetod har funnits vara användbar för identifiering av ett fåtal inflytelserika förklaringsvariabler i situationer där n < p eller interkorrelationer förekommer. Vårt material och val av metod grundar sig på en tidigare studie, som fann att r-ljud hade starkt samband med betydelsen ‘strävhet’, men som inte kontrollerade för betydelsen ‘hårdhet’ trots att dessa korrelerar med varandra. Vi kontrollerar för dimensionen strävhet-lenhet genom att utföra random forest-analysen på två delmängder: ord som används för att beskriva hårdhet eller mjukhet (n = 81), samt den delmängd av dessa ord som inte beskriver strävhet eller lenhet (n = 40). Samtliga regressorer är binära variabler, som anger förekomsten eller avsaknaden av varsitt fonem; vi utförde separata analyser på respektive datamängd för att se vilka fonem som hade störst effekt, då man betraktade specifika stavelsekomponenter. Vi fann att r-ljuden hade starkt samband med betydelsen ‘hårdhet’ både före och efter kontrollen för ‘strävhet’. Vi fann även att ljudet med symbolen i (t.ex. sista vokalen i fluffy) hade starkt samband med betydelsen ‘mjukhet’ före och efter kontroll, men vi misstänker att detta egentligen reflekterar sambandet mellan ‘mjukhet’ och exkluderade bakgrundsvariabler. / Few studies about sound symbolism, i.e. the association between the shape and meaning of words, have been based on statistical analysis. In this study, we use random forests and the permutation variable importance measure to explore which phonemes (language sounds) are prevalent in English descriptors of hardness or softness. This non-parametric machine learning method has been found useful for identification of a few influential predictors in situations where n < p or intercorrelations are present. Our materials and choice of method are based on an earlier study, in which a strong association was found between r-sounds and ‘roughness’, but which did not control for the meaning ‘hardness’ despite the correlation between them. We control for the dimension ‘roughness-smoothness’ by performing the random forest-analysis on two subsets of data: descriptors of hardness or softness (n = 81), and descriptors of hardness or softness which are not used to describe roughness or smoothness (n = 40). All regressors are binary variables indicating the presence or absence of a phoneme. Separate analyses were conducted on each subset to see which phonemes had the largest effect when specific syllable compontents were considered. We found that r-sounds had a strong association with ‘hardness’ both before and after controlling for ‘roughness’. We also found that the sound here symbolized by i (e.g. the last vowel of fluffy) had a strong association with ‘softness’ before and after control, but we suspect that this might instead reflect an association between ‘softness’ and excluded variables.
|
Page generated in 0.0629 seconds