• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Almost Regular Graphs And Edge Face Colorings Of Plane Graphs

Macon, Lisa 01 January 2009 (has links)
Regular graphs are graphs in which all vertices have the same degree. Many properties of these graphs are known. Such graphs play an important role in modeling network configurations where equipment limitations impose a restriction on the maximum number of links emanating from a node. These limitations do not enforce strict regularity, and it becomes interesting to investigate nonregular graphs that are in some sense close to regular. This dissertation explores a particular class of almost regular graphs in detail and defines generalizations on this class. A linear-time algorithm for the creation of arbitrarily large graphs of the discussed class is provided, and a polynomial-time algorithm for recognizing graphs in the class is given. Several invariants for the class are discussed. The edge-face chromatic number χef of a plane graph G is the minimum number of colors that must be assigned to the edges and faces of G such that no edge or face of G receives the same color as an edge or face with which it is incident or adjacent. A well-known result for the upper bound of χef exists for graphs with maximum degree Δ ≥ 10. We present a tight upper bound for plane graphs with Δ = 9.
2

Spectral Aspects of Cocliques in Graphs

Rooney, Brendan January 2014 (has links)
This thesis considers spectral approaches to finding maximum cocliques in graphs. We focus on the relation between the eigenspaces of a graph and the size and location of its maximum cocliques. Our main result concerns the computational problem of finding the size of a maximum coclique in a graph. This problem is known to be NP-Hard for general graphs. Recently, Codenotti et al. showed that computing the size of a maximum coclique is still NP-Hard if we restrict to the class of circulant graphs. We take an alternative approach to this result using quotient graphs and coding theory. We apply our method to show that computing the size of a maximum coclique is NP-Hard for the class of Cayley graphs for the groups $\mathbb{Z}_p^n$ where $p$ is any fixed prime. Cocliques are closely related to equitable partitions of a graph, and to parallel faces of the eigenpolytopes of a graph. We develop this connection and give a relation between the existence of quadratic polynomials that vanish on the vertices of an eigenpolytope of a graph, and the existence of elements in the null space of the Veronese matrix. This gives a us a tool for finding equitable partitions of a graph, and proving the non-existence of equitable partitions. For distance-regular graphs we exploit the algebraic structure of association schemes to derive an explicit formula for the rank of the Veronese matrix. We apply this machinery to show that there are strongly regular graphs whose $\tau$-eigenpolytopes are not prismoids. We also present several partial results on cocliques and graph spectra. We develop a linear programming approach to the problem of finding weightings of the adjacency matrix of a graph that meets the inertia bound with equality, and apply our technique to various families of Cayley graphs. Towards characterizing the maximum cocliques of the folded-cube graphs, we find a class of large facets of the least eigenpolytope of a folded cube, and show how they correspond to the structure of the graph. Finally, we consider equitable partitions with additional structural constraints, namely that both parts are convex subgraphs. We show that Latin square graphs cannot be partitioned into a coclique and a convex subgraph.
3

Computational studies of thermal and quantum phase transitions approached through non-equilibrium quenching

Liu, Cheng-Wei 12 March 2016 (has links)
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
4

Ergodicité et fonctions propres du laplacien sur les grands graphes réguliers / Ergodicity and eigenfunctions of the Laplacian on large regular graphs

Le Masson, Etienne 24 September 2013 (has links)
Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre de sommets tend vers l'infini. Cette étude s'inspire de la théorie de l'ergodicité quantique sur les variétés. Par analogie avec cette dernière, nous développons un calcul pseudo-différentiel sur les arbres réguliers : nous définissons des classes de symboles et des opérateurs associés, et nous prouvons un certain nombre de propriétés de ces classes de symboles et opérateurs. Nous montrons notamment que les opérateurs sont bornés dans L², et nous donnons des formules de l'adjoint et du produit. Nous nous servons ensuite de cette théorie pour montrer un théorème d'ergodicité quantique pour des suites de graphes réguliers dont le nombre de sommets tend vers l'infini. Il s'agit d'un résultat de délocalisation de la plupart des fonctions propres dans la limite des grands graphes réguliers. Les graphes vérifient une hypothèse d'expansion et ne comportent pas trop de cycles courts, deux hypothèses vérifiées presque sûrement par des suites de graphes réguliers aléatoires. / N this thesis, we study concentration properties of eigenfunctions of the discrete Laplacian on regular graphs of fixed degree, when the number of vertices tend to infinity. This study is made in analogy with the Quantum Ergodicity theory on manifolds. We construct a pseudo-differential calculus on regular trees by defining symbol classes and associated operators and proving some properties of these classes of symbols and operators. In particular we prove that the operators are bounded on L² and give adjoint and product formulas. We then use this theory to prove a Quantum Ergodicity theorem on large regular graphs. This is a property of delocalization of most eigenfunctions in the large scale limit. We consider expander graphs with few short cycles (for instance random large regular graphs). These hypothesis are almost surely satisfied by sequences of random regular graphs.
5

Algorithmes et applications pour la coloration et les alliances dans les graphes / Graph colorings and alliances : algorithms and applications

Yahiaoui, Said 05 December 2013 (has links)
Dans cette thèse, nous nous intéressons aux aspects algorithmiques et applications de deux problèmes de graphes, à savoir, la coloration et les alliances. La première partie concerne deux variantes de la coloration de graphes, la coloration Grundy et la coloration forte stricte. Nous commençons par l'étude du nombre Grundy des graphes réguliers. Nous donnons une condition fixe k, nous fournissons une condition nécessaire et suffisante pour que le nombre Grundy d'un graphe régulier soit au moins égal k. Nous caractérisons la classe des graphes cubiques (3-réguliers) pour laquelle le nombre Grundy est égal à 4, et nous présentons un algorithme linéaire pour déterminer le nombre Grundy d'un graphe cubique quelconque. Par ailleurs, en se basant sur la coloration forte stricte pour décomposer les arbres en petites composantes, nous présentons un nouvel algorithme pour l'appariement d'arbres étiquetés, non-ordonnés non-enracinés. Nous montrons que la distance calculée entre deux arbres est une pseudo-métrique. Nos expérimentations sur de larges bases synthétiques et des bases de données réelles confirment nos résultats analytiques et montrent que la distance proposée est précise et son algorithme est scalable. La seconde partie de cette thèse est consacrée aux alliances dans les graphes. Nous proposons un algorithme distribué autostabilisant pour la construction d'alliance offensive globale minimale dans un graphe arbitraire. Nous démontrons que cet algorithme converge sous le démon synchrone en temps linéaire. Ensuite, nous donnons le premier algorithme distribué autostabilisant pour le problème de l'alliance forte globale minimale dans un graphe quelconque. Nous prouvons que cet algorithme est polynomial sous le démon inéquitable distribué. Nous montrons par la suite, comment cet algorithme peut être adapté pour des généralisations du problème, comme la k-alliance forte et l'alliance forte pondérée. Enfin, en se basant sur les propriétés structurelles de l'alliance offensive, nous présentons une solution pour décentraliser le protocole de signalisation SIP. Ceci rend possible son déploiement dans un réseau mobile ad hoc / This thesis investigates the algorithmic aspects and applications of two graph problems, namely, colorings and alliances. In the first part, we focus on two variants of the proper vertex coloring, the Grundy coloring and the strict strong coloring. We start by the study of Grundy number for regular graphs. We give a sufficient condition for d-regular graphs with sufficiently large girth to have Grundy number equals d + 1. Then, using graph homomorphism, we obtain a necessary and sufficient condition for d-regular graphs to have Grundy number at least k. Moreover, we characterize cubic graphs (3-regular) for which the Grundy number is d + 1, and present a linear-time algorithm to determine the Grundy number of any arbitrary cubic graph. Subsequently, based on the strict strong coloring, we present an approach for the problem of matching labeled trees. Using this coloring, we propose a new algorithm to deterministically decompose a tree into small components. This leads to an efficient algorithm to measure an accurate distance between unrooted unordered labeled trees. The second part is devoted to the alliances in graphs. We first propose a linear-time self-stabilizing algorithm for the minimal global offensive alliance set problem, under the synchronous distributed scheduler. Then, we give the first self-stabilizing algorithm for the minimal global powerful alliance set problem in arbitrary graphs. Moreover, we show how this algorithm can be adapted to find the minimal global powerful k-alliance and the minimal weighted global powerful alliance sets. We prove that all these algorithms converge in polynomial-time under the unfair distributed scheduler. Finally, based on the structural properties of the offensive alliance, we propose a solution to decentralize the signaling protocol SIP. This enables SIP applications in mobile ad hoc networks
6

Some Topics concerning Graphs, Signed Graphs and Matroids

Sivaraman, Vaidyanathan 19 December 2012 (has links)
No description available.

Page generated in 0.0294 seconds