Spelling suggestions: "subject:"c.regulation modeling"" "subject:"042regulation modeling""
1 |
Automatic Generation of Goal Models from RegulationsRashidi-Tabrizi, Rouzbahan 29 October 2013 (has links)
Organizations in many domains such as healthcare, finances, telecommunications, educa-tion, and software development, must comply with an ever-increasing number of regula-tions, including laws and policies. In order to measure compliance to regulation, several recent approaches propose modelling regulations using goals and indicators. However, creating goal models for regulations is time consuming and prone to errors, especially as this is usually done manually. This thesis tackles this issue by automating some of the steps for creating goal models, and by offering better ways to create graphical views of goal models than what is currently available nowadays in goal modelling tools.
The notation used in this thesis is the Goal-oriented Requirement Language (GRL), which is part of the User Requirements Notation standard and is supported by the jUCMNav tool. The concepts of regulations and their indicators are captured using a tab-ular presentation in Comma-Separated Value (CSV) files. An import mechanism is added to jUCMNav to automatically create regulation goal models from such files. The imported GRL model can then by visualized using novel features that enable the addition of multiple views/diagrams in an efficient and usable way.
|
2 |
Automatic Generation of Goal Models from RegulationsRashidi-Tabrizi, Rouzbahan January 2013 (has links)
Organizations in many domains such as healthcare, finances, telecommunications, educa-tion, and software development, must comply with an ever-increasing number of regula-tions, including laws and policies. In order to measure compliance to regulation, several recent approaches propose modelling regulations using goals and indicators. However, creating goal models for regulations is time consuming and prone to errors, especially as this is usually done manually. This thesis tackles this issue by automating some of the steps for creating goal models, and by offering better ways to create graphical views of goal models than what is currently available nowadays in goal modelling tools.
The notation used in this thesis is the Goal-oriented Requirement Language (GRL), which is part of the User Requirements Notation standard and is supported by the jUCMNav tool. The concepts of regulations and their indicators are captured using a tab-ular presentation in Comma-Separated Value (CSV) files. An import mechanism is added to jUCMNav to automatically create regulation goal models from such files. The imported GRL model can then by visualized using novel features that enable the addition of multiple views/diagrams in an efficient and usable way.
|
3 |
Threshold Logic Properties and Methods: Applications to Post-CMOS Design Automation and Gene Regulation ModelingJanuary 2012 (has links)
abstract: Threshold logic has been studied by at least two independent group of researchers. One group of researchers studied threshold logic with the intention of building threshold logic circuits. The earliest research to this end was done in the 1960's. The major work at that time focused on studying mathematical properties of threshold logic as no efficient circuit implementations of threshold logic were available. Recently many post-CMOS (Complimentary Metal Oxide Semiconductor) technologies that implement threshold logic have been proposed along with efficient CMOS implementations. This has renewed the effort to develop efficient threshold logic design automation techniques. This work contributes to this ongoing effort. Another group studying threshold logic did so, because the building block of neural networks - the Perceptron, is identical to the threshold element implementing a threshold function. Neural networks are used for various purposes as data classifiers. This work contributes tangentially to this field by proposing new methods and techniques to study and analyze functions implemented by a Perceptron After completion of the Human Genome Project, it has become evident that most biological phenomenon is not caused by the action of single genes, but due to the complex interaction involving a system of genes. In recent times, the `systems approach' for the study of gene systems is gaining popularity. Many different theories from mathematics and computer science has been used for this purpose. Among the systems approaches, the Boolean logic gene model has emerged as the current most popular discrete gene model. This work proposes a new gene model based on threshold logic functions (which are a subset of Boolean logic functions). The biological relevance and utility of this model is argued illustrated by using it to model different in-vivo as well as in-silico gene systems. / Dissertation/Thesis / Ph.D. Computer Science 2012
|
4 |
Probing sequence-level instructions for gene expression / Etude des instructions pour l’expression des gènes présentes dans la séquence ADNTaha, May 28 November 2018 (has links)
La régulation des gènes est fortement contrôlée afin d’assurer une large variété de types cellulaires ayant des fonctions spécifiques. Ces contrôles prennent place à différents niveaux et sont associés à différentes régions génomiques régulatrices. Il est donc essentiel de comprendre les mécanismes à la base des régulations géniques dans les différents types cellulaires, dans le but d’identifier les régulateurs clés. Plusieurs études tentent de mieux comprendre les mécanismes de régulation en modulant l’expression des gènes par des approches épigénétiques. Cependant, ces approches sont basées sur des données expérimentales limitées à quelques échantillons, et sont à la fois couteuses et chronophages. Par ailleurs, les constituants nécessaires à la régulation des gènes au niveau des séquences ne peut pas être capturées par ces approches. L’objectif principal de cette thèse est d’expliquer l’expression des ARNm en se basant uniquement sur les séquences d’ADN.Dans une première partie, nous utilisons le modèle de régression linéaire avec pénalisation Lasso pour prédire l’expression des gènes par l’intermédiaire des caractéristique de l’ADN comme la composition nucléotidique et les sites de fixation des facteurs de transcription. La précision de cette approche a été mesurée sur plusieurs données provenant de la base de donnée TCGA et nous avons trouvé des performances similaires aux modèles ajustés aux données expérimentales. Nous avons montré que la composition nucléotidique a un impact majeur sur l’expression des gènes. De plus, l’influence de chaque régions régulatrices est évaluée et l’effet du corps de gène, spécialement les introns semble être clé dans la prédiction de l’expression. En second partie, nous présentons une tentative d’amélioration des performances du modèle. D’abord, nous considérons inclure dans le modèles les interactions entres les différents variables et appliquer des transformations non linéaires sur les variables prédictives. Cela induit une légère augmentation des performances du modèles. Pour aller plus loin, des modèles d’apprentissage profond sont étudiés. Deux types de réseaux de neurones sont considérés : Les perceptrons multicouches et les réseaux de convolutions.Les paramètres de chaque neurone sont optimisés. Les performances des deux types de réseaux semblent être plus élevées que celles du modèle de régression linéaire pénalisée par Lasso. Les travaux de cette thèse nous ont permis (i) de démontrer l’existence des instructions au niveau de la séquence en relation avec l’expression des gènes, et (ii) de fournir différents cadres de travail basés sur des approches complémentaires. Des travaux complémentaires sont en cours en particulier sur le deep learning, dans le but de détecter des informations supplémentaires présentes dans les séquences. / Gene regulation is tightly controlled to ensure a wide variety of cell types and functions. These controls take place at different levels and are associated with different genomic regulatory regions. An actual challenge is to understand how the gene regulation machinery works in each cell type and to identify the most important regulators. Several studies attempt to understand the regulatory mechanisms by modeling gene expression using epigenetic marks. Nonetheless, these approaches rely on experimental data which are limited to some samples, costly and time-consuming. Besides, the important component of gene regulation based at the sequence level cannot be captured by these approaches. The main objective of this thesis is to explain mRNA expression based only on DNA sequences features. In a first work, we use Lasso penalized linear regression to predict gene expression using DNA features such as transcription factor binding site (motifs) and nucleotide compositions. We measured the accuracy of our approach on several data from the TCGA database and find similar performance as that of models fitted with experimental data. In addition, we show that nucleotide compositions of different regulatory regions have a major impact on gene expression. Furthermore, we rank the influence of each regulatory regions and show a strong effect of the gene body, especially introns.In a second part, we try to increase the performances of the model. We first consider adding interactions between nucleotide compositions and applying non-linear transformations on predictive variables. This induces a slight increase in model performances.To go one step further, we then learn deep neuronal networks. We consider two types of neural networks: multilayer perceptrons and convolution networks. Hyperparameters of each network are optimized. The performances of both types of networks appear slightly higher than those of a Lasso penalized linear model. In this thesis, we were able to (i) demonstrate the existence of sequence-level instructions for gene expression and (ii) provide different frameworks based on complementary approaches. Additional work is ongoing, in particular with the last direction based on deep learning, with the aim of detecting additional information present in the sequence.
|
Page generated in 0.2228 seconds