• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 36
  • 36
  • 36
  • 14
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Shear strength of reinforced concrete T-beams strengthened using carbon fibre reinforced polymer (CFRP) laminates

Lee, Tuan Kuan, 1976- January 2003 (has links)
Abstract not available
22

Intermediate crack debonding of plated reinforced concrete beams

Liu, Irene S. T. January 2006 (has links)
With increasing number of structures reaching their designed life or capacities everyday, retrofitting has become an important area in civil engineering. A popular method of strengthening and stiffening reinforced concrete ( RC ) beams is by adhesively bonding steel or FRP plates to the external surfaces. This technique has been proven to be efficient, inexpensive, unobtrusive and can be applied while the structure is in use. However, it has been found that adhesively bonded plates are prone to premature debonding prior to reaching their designed capacities, which restricts the use of existing design rules and guidelines for retrofitting RC beams using this relatively new form of structure. There are various forms of debonding including : plate end ( PE ) debonding ; critical diagonal crack ( CDC ) debonding ; and intermediate crack ( IC ) debonding. IC debonding is an especially important mechanism as it will occur at plated hinges of continuous members, and unlike other premature debonding mechanisms, IC debonding is very difficult to prevent. This debonding mechanism is associated with the formation of flexural or flexural - shear cracks in the vicinity of the plates, which causes slip to occur at the plate / concrete as well as the bar / concrete interfaces. Most research to date has been focusing on the bond - slip relationship at the plate / concrete interface, while little attention has been given to the IC debonding behaviour of flexural members. To allow safe and effective use of plated structures, it is necessary to model the debonding behaviours at the plate / concrete interface as premature debonding will affect both the strength and ductility of the members, and hence the ability of continuous structures to redistribute moment. Despite the importance of moment redistribution, very limited research has been carried out on the moment redistribution of continuous plated members. Since IC debonding is likely to occur at plated hinges of continuous members hence affecting the ductility of the hinges, the existing approaches for determining moment redistribution of reinforced concrete beams cannot be applied to plated members. In this research a numerical model based on discrete cracking and partial interaction theory has been developed which models the IC debonding of plated beams, taking into account the slips at all interfaces. This model will allow a better understanding of the IC debonding behaviour of plated members, and also from the model, the rotation capacity of both plated and unplated hinges in continuous reinforced concrete beams can be determined. Mathematical models and design rules have been developed for analysing critical diagonal crack debonding, which is dependent on the IC debonding behaviour of the plated members. Moment redistribution of beams with externally bonded and near surface mounted plates is studied through a series of tests and a mathematical model based on variation in flexural rigidity is proposed. Through the tests carried out on continuous plated beams, much moment redistribution is evident as oppose to that suggested by the existing design guidelines for plated members, where no moment redistribution is allowed for members plated with FRP. From the models proposed for IC and CDC debonding in this research, together with the existing PE debonding models available, all debonding mechanisms can now be modelled. Furthermore from the research on continuous plated beams, moment redistribution of plated beams can be analysed, allowing safe, effective and economic use of this retrofitting technique. This thesis is presented in the form of a collection of journal papers published or submitted for publication as a result of the research performed by the author. A selection of ten publications have been included in the following context, together with literature reviews performed on the related areas of studies, as well as further discussions on the papers, which consist of any additional information or work that was carried out in this research but not presented in the papers. / Thesis (Ph.D.)--School of Civil and Environmental Engineering, 2006.
23

Shear capacity assessment of corrosion-damaged reinforced concrete beams

Farrow, William C. 19 November 2002 (has links)
The research presented here is a study to determine the effect of shear reinforcement corrosion on the shear capacity in conventionally reinforced concrete (CRC) bridge elements. A total of 14 CRC beams were tested using three stirrup spacings (8, 10, and 12-inch). Six of the beams included the influence of a 4-inch thick deck, and both positive and negative moment regions were considered. The CRC beams were subjected to an accelerated corrosion process to produce the damage states. Inspection techniques were used to visually correlate corrosion damage with actual structural performance. Severe corrosion damage was shown to have significant effect on the shear performance of the CRC beams. Findings indicate that current inspection ratings for corrosion damage may not adequately identify the extent of structural deterioration. / Graduation date: 2003
24

Durability of adhesive joints between concrete and FRP reinforcement in aggressive environments

Park, Soojae 28 August 2008 (has links)
Not available / text
25

Unpowered wireless sensors for structural health monitoring

Andringa, Matthew 28 August 2008 (has links)
Not available / text
26

Reliability assessment of flexural cracking resistance of reinforced concrete retaining structures

Cho, Wah-fu, Gordon, 曹華富 January 1979 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
27

Influence of steel fibres on response of beams

Belghiti, Moulay El Mehdi. January 2007 (has links)
The following thesis presents the results of six full scale beams tests as part of a research program conducted at McGill University on the effect of steel fibres on the shear capacity of a beam with an aid ratio greater than 2.5. The test specimens had the following dimensions: 4400 mm long, 300 mm wide and 500 mm long. The beams had 4-25M bottom reinforcing bars and 2-20M top reinforcing bars. Two series were designed with different reinforcing details: the "BA" series contained transverse reinforcement spaced at 275 mm center to center while the "BB" series had no transverse reinforcement. The specimens were cast in three batches of two specimens from each series, with each batch containing concrete with respectively 0%, 0.5% and 1% fibres content by volume. The beams were simply supported and were tested with two equal point loads located at 500 mm from the centre of the beam. / This research project demonstrated a clear improvement of the shear capacity resulting from the use of steel fibres for the beams without transverse reinforcement. For the beams with transverse reinforcement, displacement ductility was highly increased. This suggests that fibres have the potential to reduce the congestion of the reinforcement if fibres are designed to replace partially closely spaced transverse reinforcement. Also, it was noted that a redistribution of stresses occurred resulting in the formation of more well-controlled cracks. Finally, the strength predictions using the method developed by Aoude (Aoude, 2007) agree very well with the experimental results.
28

Torsional Strengthening of Reinforced Concrete Beams Using CFRP Composites

Rafeeq, Ranj 01 August 2016 (has links)
Few decades ago, there were no guidelines for torsion design of reinforced concrete (RC) beams. Hence, many existing beams in older buildings have a lack of adequate torsional strength since they were not properly designed for torsion. One way to regain/rehabilitate adequate torsional strength is through application of externally bonded carbon fiber reinforced polymers (CFRP). To date, American Concrete Institute (ACI) code, as well as other building codes, do not have recommendations or provisions for strengthening RC beams for torsion using fiber-reinforced polymer (FRP) composites due to the inexistence of conclusive experimental and analytical data. Of the very limited works on this behavior, the majority of the focus has been devoted to experimental works. Realistic spandrel beams in a building that lack torsional strength were modelled in this research, and strengthened to examine various behaviors such as load capacity, deflection, torque, twist, crack propagation, ductility, and failure modes. For this purpose, six RC beams were tested: four reference beams and two strengthened beams were used to observe additional capacity through the use of carbon fiber-reinforced polymer (CFRP) sheets. To strengthen the beams, one layer of sheets was completely wrapped around them. Results show an additional torsional capacity of 63% and 178% relative to their respective reference beams. Through strengthening, modes of failure of the beams changed from brittle torsion-dominated failure to shear-flexure failure in both beams. The study also included crack pattern and ductility of test beams. Cracks became smaller in width and more evenly distributed across the torsion-loaded area, and torsional ductility was enhanced by 266% and 165% respectively. Flexural ductility was also greatly enhanced by more than five folds. Finally, using ACI 318-14, ACI 440.2R-02, and available formulae in the literature, the beams were analyzed and the respective values were compared.
29

Effects of Rebar Temperature and Water to Cement Ratio on Rebar-Concrete Bond Strength of Concrete Containing Fly Ash

Pati, Ardeep Ranjan 05 1900 (has links)
This research presents the results on an experimental investigation to identify the effects of rebar temperature, fly ash and water to cement ratio on concrete porosity in continuously reinforced concrete pavements (CRCP). Samples were cast and analyzed using pullout tests. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40 for both fly ash containing and non fly ash control samples. There was a reduction in the peak pullout load as the rebar surface temperature increased from 77o F to 150o F for the cast samples. A heated rebar experiment was performed simulating a rebar exposed to hot summer days and the rebar cooling curves were plotted for the rebar temperatures of 180o F - 120o F. Fourier transform infrared spectroscopy was performed to show the moisture content of cement samples at the rebar-concrete interface. Mercury intrusion porosimetry test results on one batch of samples were used for pore size distribution analysis. An in-depth analysis of the morphological characteristics of the rebar-concrete interface and the observation of pores using the scanning electron microscope (SEM) was done.
30

SYNTHETIC FIBER REINFORCED CONCRETE PERFORMANCE AFTER PROLONGED ENVIRONMENTAL EXPOSURE UTILIZING THE MODIFIED INDIRECT TENSILE TEST

Unknown Date (has links)
In order to study the mechanical performance of dry-cast synthetic fiber reinforced concrete (SynFRC), samples of varying geometry, fiber content, and environmental exposure were developed and tested using the modified indirect tensile test. The samples created consisted of three different thicknesses (with two different geometries), and six different fiber contents that differed in either type, or quantity, of fibers. Throughout the duration of this research, procedures for inflicting detrimental materials into the concrete samples were employed at a number of different environments by implementing accelerated rates of deterioration using geometric adjustments, increased temperature exposure, wetting/drying cycles, and preparation techniques. The SynFRC samples studied were immersed in a wide range of environments including: the exposure of samples to high humidity and calcium hydroxide environments, which served at the control group, while the sea water, low pH, and barge conditioning environments were used to depict the real world environments similar to what would be experienced in the Florida ecosystem. As a result of this conditioning regime, the concrete was able to imitate the real-world effects that the environments would have inflicted if exposed for long durations after an exposure period of only 20-24 months. Having adequately conditioned the samples in their respective environments, they were then tested (and forensically investigated) using the modified indirect tensile testing method to gather data regarding each sample’s toughness and load handling capability. By analyzing the results from each sample, the toughness was calculated by taking the area under the force displacement curve. From these toughness readings it was found that possible degradation occurred between the fiber-matrix interface of some of the concrete samples conditioned in the Barge environment. From these specimens that were immersed in the barge environment, a handful of them exhibited multiple episodes of strain softening characteristics within their force displacement curves. In regard to the fibers used within the samples, the PVA fibers tended to pull off more while the Tuff Strand SF fibers had the highest tendency to break (despite some of the fibers showing similar pull off and breaking failure characteristics). When it comes to the overall thickness of the sample, there was clear correlation between the increase in size and the increase in sample toughness, however the degree to which it correlates varies from sample to sample. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.1225 seconds