• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 36
  • 36
  • 36
  • 14
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Study of Comprehensive Reinforcement Mechanism of Hexagonal Boron Nitride on Concrete

He, Qinyue 08 1900 (has links)
The addition of hexagonal boron nitride (h-BN) has introduced a comprehensive reinforcing effect to the mechanical and electrochemical properties of commercial concrete, including fiber reinforced concrete (FRC) and steel fiber reinforced concrete (SFRC). Although this has been proven effective and applicable, further investigation and study is still required to optimize the strengthen result which will involve the exfoliation of h-BN into single-layered nano sheet, improving the degree of dispersion and dispersion uniformity of h-BN into concrete matrix. There is currently no direct method to test the degree of dispersion of non-conductive particles, including h-BN, in concrete matrix, therefore it is necessary to obtain an analogous quantification method like SEM, etc. The reinforcing mechanism on concrete, including FRC and SFRC is now attracting a great number of interest thanks to the huge potential of application and vast demand across the world. This study briefly describes the reinforcing mechanism brought by h-BN. In this study, different samples under varied conditions were prepared according to the addition of h-BN and dispersant to build a parallel comparison. Characterization is mainly focused on their mechanical properties, corrosive performance and SEM analysis of the cross-section of post-failure samples.
32

Influence of steel fibres on response of beams

Belghiti, Moulay El Mehdi. January 2007 (has links)
No description available.
33

Assessment of lateral and torsional stiffness characteristics of medium rise concrete buildings

Mirtaheri, Masoud January 1982 (has links)
Little is known of the actual performance of existing buildings for normally Structural Engineers do not require that their structures be tested once they are built. The wide availability of computer programs to aid Structural Engineers in design and analysis is a great advantage over previous computational tools but the very precision of computer output can give the designer a false sense of accuracy. If buildings of the future are to be safe and efficient, then an assessment of the accuracy of current analytical procedures is required. This study used some of the few published measurements of the lateral and torsional dynamic characteristics of buildings to establish accurate analytical models of the structures. These measurements, for five different buildings, consisted of data on their fundamental mode shapes and natural frequencies. Initially, estimates of these characteristics were obtained by inputting traditional evaluations of the stiffness parameters for a TABS-77 program. In general, the traditional assumptions did not result in an adequate prediction when compared with the known experimental results. Improvements were made in the analytical models by incorporating "non-structural" elements or by reducing the efficiency of certain members until the fundamental mode shapes and frequencies were matched. Implications of incorrect modelling at the design stage were investigated for both static and dynamic lateral loadings. This study shows that it is necessary to match both frequencies and mode shapes if an accurate analytical model is desired. Failure to match mode shapes can seriously affect the evaluation of loads carried by the structural elements when the building is subjected to lateral loads. Internal partitions and cladding not only add stiffness to the structure but also change the mode shape. Strong evidence is provided that these nonstructural elements do carry load and do provide stiffness. This study shows that shear lag exists in shear wall elevator cores commonly occurring in buildings and this should not be neglected. Large panels buildings apparently have significant joint rotation between panels and this should be accommodated in some manner in developing an analytical model. Considerable inaccuracies have been shown to exist in present design and practice and this study provides guidance for significantly improving present analytical modelling. / Ph. D.
34

Experimental Investigation of Fiber Reinforced Concrete Beams

Al-lami, Karrar Ali 01 June 2015 (has links)
Shear strength of fiber reinforced concrete beams was studied in this research project. Three types of fibers were examined: hooked-end steel fiber, crimped-steel fiber, and crimped-monofilament polypropylene fibers. The experimental program included five beam specimens. Two of the beams were control specimens in which one was reinforced with minimum shear reinforcement according to ACI 318, while the other one did not have any shear reinforcement. Each one of the other three specimens was reinforced with one of the above mentioned fibers by 1% volumetric ratio. In addition to the beam specimens, three prisms were also made for each type fiber to determine their toughness. The aim of this research was to investigate the following questions for medium-high concrete strength 1) to evaluate the effectiveness of each type of fibers on the shear strength, 2) to investigate the shear strength, toughness, crack patterns and near ultimate load crack width of each beam, and 3) to determine if using 1% volumetric ratio of fibers as shear reinforcement in beams would provide adequate strength and stiffness properties comparable to reinforcing steel used as minimum shear reinforcement. The results showed that all three types of fibers increased the shear capacity of the beam specimens more than the beam reinforced with minimum shear reinforcement. Moreover, some of the fibers used could shift the type of failure from a pure shear failure to a combined flexural-shear or pure flexural failure.
35

The effect of South African quaternary supplementary cementitious blends on corrosion behaviour of concrete reinforcement in chloride and Sulphate media

Akinwale, Abiodun Ebebezer 10 1900 (has links)
The aim of this study was to assess the strength, durability properties and corrosion resistance of concrete samples using supplementary cementitious blended materials. In this investigation, three supplementary concrete materials (SCMs) were used together with ordinary Portland Cement (OPC) to form cementitious blends at different proportions. The supplementary materials are silica fume (SF), ground granulated blast furnace slag (GGBS) and fly ash (FA). Sixteen (16) different proportions of the cementitious blends were produced. Tests carried out on concrete samples include slump test, compressive strength, oxygen permeability, sorptivity, porosity, chloride conductivity test, resistance to chloride and sulphate attack. The electrode potentials of tested samples were also observed using electrochemical measurements. Concrete specimens prepared with 10%, 20%, 30%, 40%, up to 60% of blended cements replacement levels were evaluated for their compressive strength at, 7, 14, 28, 90 and 120 days while the specimens were evaluated for durability tests at 28, and 90 days respectively. The results were compared with ordinary Portland cement concrete without blended cement. Voltage, and temperature measurements were also carried out to understand the quality of concrete. The corrosion performance of steel in reinforced concrete was studied and evaluated by electrochemical half-cell potential technique in both sodium chloride, and magnesium sulphate solutions respectively. The reinforced concrete specimens with centrally embedded 12mm steel bar were exposed to chloride and sulphate solutions with the 0.5 M NaCl and MgSO4 concentrations respectively. An impressed voltage technique was carried out to evaluate the corrosion resistance of the combination of quaternary cementitious blended cement, so as to get the combination with optimum performance. Improvement of strength, durability, and corrosion resistance properties of blended concrete samples are observed at different optimum percentages for binary, ternary and quaternary samples. The effect of cementitious blends is recognized in limiting the corrosion potential of the tested SCM concrete samples. Generally, the cementitious blends with limited quantity of SF to 10% have the potential to produce satisfactory concrete. These should however be used for low cost construction, where high quality concrete is not required. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
36

The Repair of Laterally Damaged Concrete Bridge Girders Using Carbon Fiber Reinforcing Polymers (CFRP)

Graeff, Matthew Kent 01 January 2012 (has links)
In recent years the use of carbon fiber reinforcing polymers (CFRP) to repair damaged structural components has become more accepted and practiced. However, the current reference for designing FRP systems to repair and strengthen reinforced concrete (RC) and prestressed concrete (PSC) girders has limitations. Similarly, very few resources address solutions for the debonding problem associated with CFRP laminates or the use of CFRP laminates to repair structural members with pre-existing damage. The included experimental program consists of testing both RC and PSC girders with simulated lateral damage and CFRP repairs. A total of 34 RC beams were statically tested under a 4-point loading until failure and had cross-section dimensions of 5” x 10” (14cm x 25.4cm), were 8’ long (2.44m), and were reinforced with either #3 or #4 mild steel rebar. 13 PSC girders having cross-section dimensions representing a half-scaled AASHTO type II shape, were 20’ long (6.1m), and were prestressed with five 7/16” (11.1mm) diameter low-lax 7-wire strands. Ten of the PSC girders were statically loaded until failure under a 4-point testing setup, but 3 PSC girders were dynamically tested under fatigue loading using a 3-point arrangement. Different configurations of CFRP laminates, number and spacing of CFRP transverse U-wraps, and amount of longitudinal CFRP layers are studied. The results present the flexural behavior of all specimen including load-deflection characteristics, strain characteristics, and modes of failure. Ultimately, results are used to recommend important considerations, needed criteria, and proper design procedures for a safe and optimized CFRP repair configuration.

Page generated in 0.0785 seconds