Spelling suggestions: "subject:"relativistic cosmology"" "subject:"relativistic osmology""
1 |
Análogos clássicos para cosmologias relativísticas aceleradas: uma abordagem lagrangiana / Classical analogs to accelerated FRW cosmologies: a Lagrangian descriptionHolanda, Rodrigo Fernandes Lira de 11 April 2007 (has links)
Nesta dissertação, uma revisão dos modelos cosmológicos newtonianos e neo-newtonianos baseados na formulação da hidrodinâmica clássica é apresentada, com especial ênfase para os resultados básicos e as limitações mais importantes dessas abordagens. Em seguida, mostramos que a descrição Lagrangiana clássica proposta por Lima, Moreira e Santos (1998) para fluidos simples, pode ser generalizada para incluir modelos com misturas de fluidos, e portanto, cosmologias mais realísticas contendo bárions, matéria escura e energia escura, bem como qualquer forma de interação entre essas componentes. Neste trabalho propomos uma descrição lagrangiana clássica para modelos relativísticos do tipo FRW. Nesta descrição, o comportamento dinâmico do fator de escala a(t), como previsto pelas cosmologias relativísticas, é substituído pelo movimento unidimensional de uma partícula teste de massa m sob a ação de um potencial clássico, V(x), onde x é a coordenada unidimensional da partícula. O tratamento pode ser aplicado para os mais diversos cenários de energia escura. Para exemplificar, discutimos com detalhe os seguintes modelos contendo matéria escura e energia escura: XCDM, X(z)CDM, Lambda CDM, Lambda(t) e gás de Chaplygin. Por completeza, modelos multidimensionais do tipo FRW também são considerados. Em todos esses modelos, o parâmetro de curvatura k das seções espaciais das cosmologias determina a energia total da partícula teste pela relação, E=-mk/2, tal como ocorre nos modelos de fluidos simples. As propriedades dinâmicas associadas com o presente estágio de aceleração do universo são univocamente descritas em termos da função potencial do sistema. Finalmente, utilizando os dados da distância de luminosidade provenientes das supernovas do tipo Ia, discutimos como o potencial unidimensional pode ser reconstruído a partir das observações. / In this dissertation, a review of the Newtonian and neo-Newtonian cosmological models based on the classical hydrodynamics formulation is presented with special emphasis to the basic results and the main limitations of such approaches. Next, we show that the classical Lagrangian description as proposed by Lima, Moreira & Santos (1998) for simple fluids, can be generalized to include fluid mixtures, and, therefore, more realistic cosmologies containing baryons, dark matter and dark energy, as well as, any kind of interaction among such components. In the lagrangian description, the dynamic behavior of the scale factor a(t), as predicted by the relativistic cosmologies, is replaced by the unidimensional motion of a test particle with mass m under the action of a classical potential, V(x), where x(t) is the coordinate of the particle. The treatment can be applied for many different scenarios of dark energy. In order to exemplify, we discuss with detail the following models containing dark matter and dark energy: XCDM, X(z)CDM, Lambda(t)CDM and the Chaplygin gas. For completeness, FRW type multidimensional models are also considered. For all these models, the curvature parameter k of the spatial sections in the relativistic cosmologies determines the total energy by the relation, E=-mk/2, as occurs in the simple fluid models. The dynamic property associated with the present accelerating stage of the Universe are univocally described in terms of the potential function of the system. Finally, by using the data from luminosity distance of supernovae type Ia, we discuss how the unidimensional potential can be reconstructed from the observations.
|
2 |
Estudos acerca de duas formulações da cosmologia Newtoniana: discreta e contínuaNascimento, Francinaldo Florencio do 29 July 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-13T13:50:59Z
No. of bitstreams: 1
arquivototal.pdf: 2320909 bytes, checksum: 25cc6b6504385f6f69412717c2952be1 (MD5) / Made available in DSpace on 2017-09-13T13:50:59Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2320909 bytes, checksum: 25cc6b6504385f6f69412717c2952be1 (MD5)
Previous issue date: 2016-07-29 / We considered the discrete approach to Newtonian cosmology presented by Ellis and Gibbons in a recent paper, and generalize this to the continuum limit. The results are obtained using the Newton's laws for particles interacting gravitationally, which are moving homothetically, with with their comoving positions constituting a central configuration. It requines no use of the fluid mechanics, but just a correspondence between the quantities which appear in the approach of Ellis and Gibbons and their generalizations for a system with high density, but with a finite number of particles. The solutions of the equation for the scale factor are presented, taking into account the presence of a term associated with the cosmological constant. We briefly present the relativistic cosmology and compare with Newtonian cosmology. / Consideramos a formulagao discreta da cosmologia Newtoniana adotada por Ellis e Gibbons, em artigo recente, e fazemos uma generalizagao para o limite do continuo. Os resultados sao obtidos com o use das leis de Newton para particulas que interagem gravitacionalmente, que se movem homoteticamente, com suas coordenadas comOveis constituindo-se uma configuragao central. Nao foi necessario o use da mecanica dos fluidos, mas tao somente, uma correspondencia direta entre as grandezas discretas da formulagao de Ellis e Gibbons e suas generalizagoes para um sistema muito denso, com um nilmero finito de particulas. Sao apresentadas solugoes da equagao para o fator de escala, considerando a presenga do termo associado a constante cosmolOgica. E feita uma breve apresentagao da cosmologia Einsteiniana e uma comparagao com a cosmologia Newtoniana.
|
3 |
Análogos clássicos para cosmologias relativísticas aceleradas: uma abordagem lagrangiana / Classical analogs to accelerated FRW cosmologies: a Lagrangian descriptionRodrigo Fernandes Lira de Holanda 11 April 2007 (has links)
Nesta dissertação, uma revisão dos modelos cosmológicos newtonianos e neo-newtonianos baseados na formulação da hidrodinâmica clássica é apresentada, com especial ênfase para os resultados básicos e as limitações mais importantes dessas abordagens. Em seguida, mostramos que a descrição Lagrangiana clássica proposta por Lima, Moreira e Santos (1998) para fluidos simples, pode ser generalizada para incluir modelos com misturas de fluidos, e portanto, cosmologias mais realísticas contendo bárions, matéria escura e energia escura, bem como qualquer forma de interação entre essas componentes. Neste trabalho propomos uma descrição lagrangiana clássica para modelos relativísticos do tipo FRW. Nesta descrição, o comportamento dinâmico do fator de escala a(t), como previsto pelas cosmologias relativísticas, é substituído pelo movimento unidimensional de uma partícula teste de massa m sob a ação de um potencial clássico, V(x), onde x é a coordenada unidimensional da partícula. O tratamento pode ser aplicado para os mais diversos cenários de energia escura. Para exemplificar, discutimos com detalhe os seguintes modelos contendo matéria escura e energia escura: XCDM, X(z)CDM, Lambda CDM, Lambda(t) e gás de Chaplygin. Por completeza, modelos multidimensionais do tipo FRW também são considerados. Em todos esses modelos, o parâmetro de curvatura k das seções espaciais das cosmologias determina a energia total da partícula teste pela relação, E=-mk/2, tal como ocorre nos modelos de fluidos simples. As propriedades dinâmicas associadas com o presente estágio de aceleração do universo são univocamente descritas em termos da função potencial do sistema. Finalmente, utilizando os dados da distância de luminosidade provenientes das supernovas do tipo Ia, discutimos como o potencial unidimensional pode ser reconstruído a partir das observações. / In this dissertation, a review of the Newtonian and neo-Newtonian cosmological models based on the classical hydrodynamics formulation is presented with special emphasis to the basic results and the main limitations of such approaches. Next, we show that the classical Lagrangian description as proposed by Lima, Moreira & Santos (1998) for simple fluids, can be generalized to include fluid mixtures, and, therefore, more realistic cosmologies containing baryons, dark matter and dark energy, as well as, any kind of interaction among such components. In the lagrangian description, the dynamic behavior of the scale factor a(t), as predicted by the relativistic cosmologies, is replaced by the unidimensional motion of a test particle with mass m under the action of a classical potential, V(x), where x(t) is the coordinate of the particle. The treatment can be applied for many different scenarios of dark energy. In order to exemplify, we discuss with detail the following models containing dark matter and dark energy: XCDM, X(z)CDM, Lambda(t)CDM and the Chaplygin gas. For completeness, FRW type multidimensional models are also considered. For all these models, the curvature parameter k of the spatial sections in the relativistic cosmologies determines the total energy by the relation, E=-mk/2, as occurs in the simple fluid models. The dynamic property associated with the present accelerating stage of the Universe are univocally described in terms of the potential function of the system. Finally, by using the data from luminosity distance of supernovae type Ia, we discuss how the unidimensional potential can be reconstructed from the observations.
|
4 |
Investigating Systematics In The Cosmological Data And Possible Departures From Cosmological PrincipleGupta, Shashikant 08 1900 (has links) (PDF)
This thesis contributes to the field of dark energy and observational cosmology. We have investigated possible direction dependent systematic signal and non-Gaussian features in the supernovae (SNe) Type Ia data. To detect these effects we propose a new method of analysis. Although We have used this technique on SNe Ia data, it is quite general and can be applied to other data sets as well.
SNe Ia are the most precise known distance indicators at the cosmological distances. Their constant peak luminosity(after correction) makesthem standard candles and hence one can measure the distances in the universe using SNe Ia. This distance measurement can determine various cosmological parameters such as the Hubble constant, various components of matter density and dark energy from, the SNe Ia observations. Recent SNe Ia observations have shown that the expansion of the universe is currently accelerating. This recent acceleration is explained by invoking a component in the universe having negative pressure and is termed as dark energy. It can be described by a homogeneous and isotropic fluid with the equation of state P = wρ, where w is allowed to be negative. A constant(Λ) in the Einstein equation(known as cosmological constant) can explain the acceleration, in the fluid model it can be modeled with w = -1. Other models of dark energy with w = -1 can also explain the acceleration, however the precise nature of this mysterious component remains unknown. Although there exist a wide range of dark energy models, cosmological constant provides the simplest explanation to the acceleration of the expansion of the Universe. The equation of state parameter w has been investigated by recent surveys but the results are still consistent with a wide range of dark energy models. In order to discriminate among various cosmological models we need an even more precise measurement of distance and error bars in the SNe Ia data.
From the central limit theorem we expect Gaussian errors in any experiment that is free from systematic noise. However in astronomy we do not have a control over the observed phenomena and thus can not control the systematic errors (due to some physical processes in the Universe) in the observed data. The only possible way to deal with such data is by using appropriate statistical techniques. Among these systematic features the direction dependent features are more dangerous ones since they may indicate a preferred direction in the Universe.
To address the issue of direction dependent features we have developed a new technique(Δ statistic henceforth) which is based on the extreme value theory. We have applied this technique to the available high-z SNe Ia data from Riess et al.(2004)and Riess et al.(2007). In addition we have applied it to the HST data from HST key project for H0 measurement. Below we summarize the material presented in the thesis.
Chapter wise summary of the thesis
In the first chapter we present an introductory discussion of the various basic cosmological notions eg. Cosmological Principle (CP), observational evidence in support of CP and departures from it, distance measures and large scale structure. The observed departures from the CP could be present due to the systematic errors and/or non-Gaussian error bars in the data. We discuss the errors involved in the measurement process
Basics of statistical techniques : In the next two chapters we discuss basics of the statistical techniques used in this thesis and extreme value theory. Extreme value theory describes how to calculate the distribution of extreme events. The simplest of the distributions of the extremes is known as the Gumbel distribution. We discuss features of the Gumbel distribution since it is used extensively in our analysis.
Δ statistic and features in the SNe data : In the fourth chapter we derive Δ statistic and apply it to the SNe Ia data sets. An outline of the Δ statistic is as follows : a) We define a plane which cuts the sky into hemispheres. This plane will divide the data into two subsets, one in each hemisphere. b) Now we calculate the χ2 in each hemisphere for an FRW universe assuming a flat geometry. c) The difference of χ2 in the two hemisphere is calculated and maximized by rotating the plane. This maximum should follow the Gumbel distribution. Since it is difficult to calculate the analytic form of Gumbel distribution we calculate it numerically assuming Gaussian error bars. This gives the theoretical distribution for the above calculated maximum of difference of χ2 . The results indicate that GD04 shows systematic effects as well non-Gaussian features while the set GD07 is better in terms of systematic effects and non-Gaussian features.
Non-Gaussian features in the H0 data : HST key project measures the value of Hubble constant at the level of 10% accuracy, which requires precise measurement of the distances. It uses various methods to measure distance for instance SNe Ia, Tully-Fisher relation, surface-brightness fluctuations etc. In the fifth chapter we apply Δ statistic to the HST Key Project data in order to check the presence of non-Gaussian and direction dependent features. Our results show that although this data set seems to be free of direction dependent features, it is inconsistent with the Gaussian errors.
Analytic Marginalization : The quantities of real interest in cosmology are ΩM and ΩΛ, Hubble constant could in principle be treated as a nuisance parameter. It would be useful to marginalize over the nuisance parameter. Although it can be done numerically using Bayesian method, Δ statistic does not allow it. In chapter six we propose a method to marginalize over H0 analytically. The χ2 in this case is a complicated function of errors in the data. We compare this analytic method with the Bayesian marginalization method and results show that the two methods are quite consistent. We apply the Δ statistic to the SNe data after the analytic marginalization. Results do not change much indicating the insensitivity of the direction de-pendent features to the Hubble constant.
A variation to the Δ statistic: As has been discussed earlier that, it is difficult to calculate the theoretical distribution of Δ in general. However if the parent distribution follows certain conditions it is possible to derive the analytic form for the Gumbel distribution for Δ. In the seventh chapter we derive a variation to the Δ statistic in a way that allows us to calculate the analytic distribution. The results in this case are different from those presented earlier, but they confirm the same direction dependence and non-Gaussian features in the data.
|
Page generated in 0.0628 seconds