• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transmission electron microscopy investigation of growth and strain relaxation mechanisms in GaN (0001) films grown on silicon (111) substrates

Markurt, Toni 08 January 2016 (has links)
In dieser Arbeit untersuchen wir die grundlegenden Wachstums- und Relaxationsprozesse, die es erlauben den Verzerrungszustand von GaN (0001) beim Wachstum auf Silizium (111) Substraten einzustellen und die resultierende Dichte an Durchstoßversetzungen zu reduzieren. Zu deren Analyse werden GaN (0001) Schichten, die mittels metallorganischer Gasphasenepitaxy abgeschieden worden sind, hauptsächlich mit transmissionselekronenmikroskopischen Methoden untersucht. Die wesentlichen Erkenntnisse der Arbeit sind: (i) Der Aufbau einer kompressiven Verzerrung von GaN (0001) Filmen mittels AlGaN Zwischenschichten beruht auf einer Asymmetrie der plastischen Relaxation an den beiden Grenzflächen der AlGaN Zwischenschicht. Fehlpassungsversetzungen bilden sich zwar an beiden Grenzflächen aus, jedoch ist der mittlere Abstand zwischen Versetzungslinien an der unteren Grenzfläche kleiner, als an der oberen. (ii) Plastische Relaxation von verzerrten (0001) Wurtzit Schichten erfolgt im Wesentlichen durch Bildung von a-Typ Fehlpassungsversetzungen im 1/3 |{0001} Gleitsystem. Diese bilden sich aber nur dann, wenn die verzerrten Schichten eine 3-D Morphologie aufweisen. Eine quantitative Modellierung dieses Prozesses zeigt, dass die kritische Schichtdicke für das Einsetzen der plastischen Relaxation wesentlich vom Wachstumsmodus bestimmt wird. (iii) Eine Silizium Delta-Dotierung der GaN (0001) Oberfläche führt zum Wachstum einer kohärenten Sub-Monolage SiGaN3, die eine periodisch Anordnung von Silizium- und Galliumatomen, sowie Galliumvakanzen aufweist. Da das Wachstum von GaN direkt auf der SiGaN3-Monolage unterdrückt ist, tritt ein Übergang zu 3-D Inselwachstum auf, das zunächst ausschließlich in Löchern der SiGaN3-Monolage anfängt. Eine hohe Konzentration von Silizium auf der GaN (0001) Oberfläche wirkt also als Anti-Surfactant beim epitaktischen Wachstum von GaN. Rechnungen mittels der Dichtefunktionaltheorie liefern Erklärungen für das beobachtete Wachstumsverhalten. / In this work we study the basic growth and relaxation processes that are used for strain and dislocation engineering in the growth of GaN (0001) films on silicon (111) substrates. To analyse these processes, samples, grown by metalorganic vapour phase epitaxy were investigate by means of transmission electron microscopy. Our investigations have revealed the following main results: (i) Strain engineering and build-up of compressive strain in GaN (0001) films by means of AlGaN interlayer is based on an asymmetry in plastic relaxation between the two interfaces of the AlGaN interlayer. Although misfit dislocation networks form at both interfaces of the interlayer, the average spacing of dislocation lines at the lower interface is smaller than that at the upper one. (ii) Plastic relaxation of strained (0001) wurtzite films is caused mainly by formation of a-type misfit dislocations in the 1/3 |{0001} slip-system. These a-type misfit dislocations form once the strained films undergo a transition to a 3-D surface morphology, e.g. by island growth or cracking. Quantitative modelling of this process reveals that the critical thickness for nucleation of a-type misfit dislocations depends next to the lattice mismatch mainly on the growth mode of the film. (iii) Silicon delta-doping of the GaN (0001) surface leads to the growth of a coherent sub-monolayer of SiGaN3 that shows a periodic arrangement of silicon and gallium atoms and gallium vacancies. Since growth of thick GaN layers directly on top of the SiGaN3-monolayer is inhibited a transition towards 3-D island growth occurs, whereby GaN islands exclusively nucleate at openings in the SiGaN3-monolayer. A high concentration of silicon on the GaN (0001) surface thus acts as an anti-surfactant in the epitaxial growth of GaN. Our density functional theory calculations provide an explanation for both the self-limited growth of the SiGaN3-monolayer, as well as for the blocking of GaN growth on top of the SiGaN3-monolayer.

Page generated in 0.12 seconds