• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Microstructure Study of Hot-pressed Pb(Mg1/3Nb2/3)O3 Ceramics

Tsai, Tsung-Fu 11 July 2000 (has links)
none
2

Electromechanical Behavior of Relaxor Ferroelectric Crystals

Liu, Tieqi 22 November 2004 (has links)
Relaxor ferroelectric PZN-xPT and PMN-xPT single crystals exhibit extraordinary electromechanical properties. They are under development for applications in sensors, actuators and transducers. The polarization switching and phase transition behavior of PZN-4.5%PT and PMN-32%PT single crystals under external loading has been investigated. Experimental investigation elucidates the polarization switching and phase transition behavior of relaxor ferroelectric crystals at different orientation cuts under combined temperature, electric field and stress loading. These crystals exhibit strong orientation dependence of electromechanical properties, and the applied fields all affect the poling and phase states of the crystals. Based on experimental investigation, crystal variant modeling was developed to compute the piezoelectric properties of multi-domain crystals at different orientation cuts from a set of properties for the single domain. Thermodynamics and work-energy analysis of field induced phase transitions in these single crystals sheds light on the phase transition mechanism of ferroelectric crystals. Fracture behavior of relaxor single crystals under non-uniform electric fields at a partial electrode edge has also been measured and analyzed.
3

Advances in electrical energy storage using core-shell structures and relaxor-ferroelectric materials

Brown, James Emery January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Jun Li / Electrical energy storage (EES) is crucial in todays’ society owing to the advances in electric cars, microelectronics, portable electronics and grid storage backup for renewable energy utilization. Lithium ion batteries (LIBs) have dominated the EES market owing to their wide use in portable electronics. Despite the success, low specific capacity and low power rates still need to be addressed to meet the increasing demands. Particularly, the low specific capacity of cathode materials is currently limiting the energy storage capability of LIBs. Vanadium pentoxide (V₂O₅) has been an emerging cathode material owing to its low cost, high electrode potential in lithium-extracted state (up to 4.0 V), and high specific capacities of 294 mAh g⁻¹ (for a 2 Li⁺/V₂O₅ insertion process) and 441 mAh g⁻¹ (for a 3 Li⁺/V₂O₅ insertion process). However, the low electrical conductivities and slow Li⁺ ion diffusion still limit the power rate of V₂O₅. To enhance the power-rate capability we construct two core-shell structures that can achieve stable 2 and 3 Li⁺ insertion at high rates. In the first approach, uniform coaxial V₂O₅ shells are coated onto electrospun carbon nanofiber (CNF) cores via pulsed electrodeposition. The materials analyses confirm that the V₂O₅ shell after 4 hours of thermal annealing at 300 °C is a partially hydrated amorphous structure. SEM and TEM images indicate that the uniform 30 to 50 nm thick V₂O₅ shell forms an intimate interface with the CNF core. Lithium insertion capacities up to 291 and 429 mAh g⁻¹ are achieved in the voltage ranges of 4.0 – 2.0 V and 4.0 – 1.5 V, respectively, which are in good agreement with the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion. Moreover, after 100 cycles, remarkable retention rates of 97% and 70% are obtained for 2 and 3 Li⁺/V₂O₅ insertion, respectively. In the second approach, we implement a three-dimensional (3D) core-shell structure consisting of coaxial V₂O₅ shells sputter-coated on vertically aligned carbon nanofiber (VACNF) cores. The hydrated amorphous microporous structure in the “as-deposited” V₂O₅ shells and the particulated nano-crystalline V₂O₅ structure formed by thermal annealing are compared. The former provides remarkably high capacity of 360 and 547 mAh g⁻¹ in the voltage range of 4.0 – 2.0 V and 4.0 – 1.5 V, respectively, far exceeding the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion, respectively. After 100 cycles of 3 Li⁺/V₂O₅ insertion/extraction at 0.20 A g⁻¹ (~ C/3), ~ 84% of the initial capacity is retained. After thermal annealing, the core-shell structure presents a capacity of 294 and 390 mAh g⁻¹, matching well with the theoretical values for 2 and 3 Li⁺/V₂O₅ insertion. The annealed sample shows further improved stability, with remarkable capacity retention of ~100% and ~88% for 2 and 3 Li⁺/V₂O₅ insertion/extraction. However, due to the high cost of Li. alternative approaches are currently being pursued for large scale production. Sodium ion batteries (SIB) have been at the forefront of this endeavor. Here we investigate the sodium insertion in the hydrate amorphous V₂O₅ using the VACNF core-shell structure. Electrochemical characterization was carried out in the potential ranges of 3.5 – 1.0, 4.0 – 1.5, and 4.0 – 1.0 (vs Na/Na⁺). An insertion capacity of 196 mAh g-1 is achieved in the potential range of 3.5 – 1.0 V (vs Na/Na⁺) at a rate of 250 mA g⁻¹. When the potential window is shifted upwards to 4.0 – 1.5 V (vs Na/Na⁺) an insertion capacity of 145 mAh g⁻¹ is achieved. Moreover, a coulombic efficiency of ~98% is attained at a rate of 1500 mA g⁻¹. To enhance the energy density of the VACNF-V₂O₅ core-shell structures, the potential window is expanded to 4.0 – 1.0 V (vs Na/Na⁺) which achieved an initial insertion capacity of 277 mAh g⁻¹. The results demonstrate that amorphous V₂O₅ could serve as a cathode material in future SIBs.
4

Study Of Relaxor Ferroelectric PMN-PT Thin Films For Energy Harvesting Applications

Saranya, D 07 1900 (has links) (PDF)
The present research work mainly focuses on the fabrication of 0.85PMN-0.15PT thin film relaxor ferroelectrics for energy harvesting applications. Chapter 1 gives a brief review about why energy harvesting is required and the different ways it can be scavenged. An introduction to relaxor ferroelectrics and their characteristics structural features are discussed. A brief introduction is given about charge storage, electrocaloric effect , DC-EFM and integration over Si substrate is discussed. Finally, the specific objectives of the current research are outlined. Chapter 2 deals with the various experimental studies carried out in this research work. It gives the details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. A brief explanation of material fabrication, Microstructural and physical property measurements is discussed. Chapter3 involves the optimization process carried out to contain a phase pure PMN-PT structure without any pyrochlore phase. The optimization process is an important step in the fabrication of a thin film as the quality of any device is determined by their structural and Microstructural features. XRD, SEM, AFM were used to characterize the observed phase formation in these films. The optimizing domain images of polycrystalline 0.85PMN-0.15PT thin films on La0.5Sr0.5CoO3/ (111) Pt/TiO2/SiO2/Si substrates deposited at different oxygen partial pressures are presented. The oxygen pressure has a drastic influence on the film growth and grain morphology which are revealed through XRD and SEM characterization techniques. The presence of oxygen vacancies have found to influence the distribution of polar nanoregions and their dynamics which are visualized using domain images acquired by DC-EFM In Chapter 7 the piezoelectric response of 0.85PMN-0.15PT thin films are studied due to the electric field induced bias. From this the d33 value is calculated. d33 value is an important parameter which determines whether a material is suitable for device application (PZT). But, for a device fabrication it is important to integrate them with Si wafer which is not a straightforward work .Hence, buffer layers are used to obtain a pure perovskite PMN-PT film. We have deposited 0.85PMN-0.15PT thin films of 500 nm on a SOI wafer and tried to investigate their piezoelectric application. Chapter 8 summarizes the present study and discusses about the future work that could give more insight into the understanding of the0.85PMN-0.15 PT relaxor ferroelectric thin film.

Page generated in 0.0464 seconds