Spelling suggestions: "subject:"delay channel"" "subject:"relay channel""
1 |
Parity Forwarding for Relay NetworksRazaghi, Peyman 02 March 2010 (has links)
In this dissertation, we introduce a relay protocol for multiple-relay networks called parity forwarding. The relay channel is a classic multiuser information theory problem introduced in 1971, modeling a network of three nodes: a source, a destination, and a relay node. The relay has no message of its own and assists the source to communicate to the destination. Of the two main coding
techniques for the relay channel, decode-and-forward (DF) and compress-and-forward (CF), our focus is to understand the DF scheme
for single- and multiple-relay channels. For the single-relay channel, we present an interpretation of the classic DF strategy
from a linear-coding perspective. Identifying binning in the classic DF strategy as parity bit generation, we devise ensembles of low-density parity-check (LDPC) codes, called bilayer LDPC codes, to incorporate the parity bits generated by the relay in the decoding process at the destination. We develop code design techniques and optimize the parameters of the bilayer LDPC code structure to show
that bilayer LDPC codes can approach the theoretical DF rate.
Inspired by the relation between binning and parity bits, we introduce the parity forwarding protocol to improve on the achievable DF rate in a multiple-relay network. For a two-relay network, we show
that the previous multihop DF protocol can be improved if the relays forward parity messages and receivers (relays or the destination)use a joint decoding scheme. Depending on the relation between relay
messages and decoded messages at each relay, different parity forwarding protocols are possible. In this thesis, we present a
structured characterization of a class of parity forwarding protocols for multiple-relay networks. We propose a tree structure
to describe the relations between messages. Using this tree structure, we derive a closed-form expression for the parity
forwarding rate in a relay network with an arbitrary number of relays. Finally, examples of new types of degraded multiple-relay networks are presented for which the parity forwarding protocol achieves capacity.
|
2 |
Parity Forwarding for Relay NetworksRazaghi, Peyman 02 March 2010 (has links)
In this dissertation, we introduce a relay protocol for multiple-relay networks called parity forwarding. The relay channel is a classic multiuser information theory problem introduced in 1971, modeling a network of three nodes: a source, a destination, and a relay node. The relay has no message of its own and assists the source to communicate to the destination. Of the two main coding
techniques for the relay channel, decode-and-forward (DF) and compress-and-forward (CF), our focus is to understand the DF scheme
for single- and multiple-relay channels. For the single-relay channel, we present an interpretation of the classic DF strategy
from a linear-coding perspective. Identifying binning in the classic DF strategy as parity bit generation, we devise ensembles of low-density parity-check (LDPC) codes, called bilayer LDPC codes, to incorporate the parity bits generated by the relay in the decoding process at the destination. We develop code design techniques and optimize the parameters of the bilayer LDPC code structure to show
that bilayer LDPC codes can approach the theoretical DF rate.
Inspired by the relation between binning and parity bits, we introduce the parity forwarding protocol to improve on the achievable DF rate in a multiple-relay network. For a two-relay network, we show
that the previous multihop DF protocol can be improved if the relays forward parity messages and receivers (relays or the destination)use a joint decoding scheme. Depending on the relation between relay
messages and decoded messages at each relay, different parity forwarding protocols are possible. In this thesis, we present a
structured characterization of a class of parity forwarding protocols for multiple-relay networks. We propose a tree structure
to describe the relations between messages. Using this tree structure, we derive a closed-form expression for the parity
forwarding rate in a relay network with an arbitrary number of relays. Finally, examples of new types of degraded multiple-relay networks are presented for which the parity forwarding protocol achieves capacity.
|
3 |
Coding Schemes for Multiple-Relay ChannelsWu, Xiugang 09 December 2013 (has links)
In network information theory, the relay channel models a communication scenario where there is one or more relay nodes that can help the information transmission between the source and the destination. Although the capacity of the relay channel is still unknown even in the single-relay case, two fundamentally different relay schemes have been developed by (Cover and El Gamal, 1979) for such channels, which, depending on whether the relay decodes the information or not, are generally known as Decode-and-Forward (D-F) and Compress-and-Forward (C-F). In the D-F relay scheme, the relay first decodes the message sent by the source and then forwards it to the destination, and the destination decodes the message taking into account the inputs of both the source and the relay. In contrast, the C-F relay scheme is used when the relay cannot decode the message sent by the source, but still can help by compressing its observation into some compressed version, and forwarding this compression into the destination; the destination then either successively or jointly decodes the compression of the relay's observation and the original message of the source. For the single-relay case, it is known that joint compression-message decoding, although providing more freedom in choosing the compression at the relay, cannot achieve higher rates for the original message than successive decoding.
This thesis addresses some fundamental issues in generalizing and unifying the above D-F and C-F relay schemes to the multiple-relay case. We first generalize the C-F scheme to multiple-relay channels, and investigate the question of whether compression-message joint decoding can improve the achievable rate compared to successive decoding in the multiple-relay case. It is demonstrated that in the case of multiple relays, there is no improvement on the achievable rate by joint decoding either. More interestingly, it is discovered that any compressions not supporting successive decoding will actually lead to strictly lower achievable rates for the original message. Therefore, to maximize the achievable rate for the original message, the compressions should always be chosen to support successive decoding. Furthermore, it is shown that any compressions not completely decodable even with joint decoding will not provide any contribution to the decoding of the original message.
We also develop a new C-F relay scheme with block-by-block backward decoding. This new scheme improves the original C-F relay scheme to achieve higher rates in the multiple-relay case as the recently proposed noisy network coding scheme. However, compared to noisy network coding which uses repetitive encoding/all blocks united decoding, our new coding scheme is not only simpler, but also reveals the essential reason for the improvement of the achievable rate, that is, delayed decoding until all the blocks have been finished.
Finally, to allow each relay node the freedom of choosing either the D-F or C-F relay strategy, we propose a unified relay framework, where both the D-F and C-F strategies can be employed simultaneously in the network. This framework employs nested blocks combined with backward decoding to allow for the full incorporation of the best known D-F and C-F relay strategies. The achievable rates under our unified relay framework are found to combine both the best known D-F and C-F achievable rates and include them as special cases. It is also demonstrated through a Gaussian network example that our achievable rates are generally better than the rates obtained with existing unified schemes and with D-F or C-F alone.
|
4 |
Video transmission over a relay channel with a compress-forward code designPolapragada, Chaitanya 15 May 2009 (has links)
There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios.
|
5 |
Investigation on the Compress-and-Forward Relay SchemeZhang, Jie January 2012 (has links)
The relay channel plays an integral role in network communication systems. An intermediate node acts as a relay to facilitate the communication between the source and the destination. If the rate of codewords is less than the capacity of the source-relay link, the relay can decode the source's messages and forward them to the destination. On the contrary, if the rate of codewords is greater than the capacity of the source-relay link, the
relay cannot decode the messages. Nevertheless, the relay can still compress its observations and then send them to the destination. Obviously, if the relay-destination link is
of a capacity high enough such that the relay's observations can be losslessly sent to the destination, then the maximum message rate can be achieved as if the relay and the destination can jointly decode. However, when the relay-destination link is of a limited capacity
such that the relay's observation cannot be losslessly forwarded to the destination, then what is the maximum achievable rate from the source to the destination? This problem was formulated by Cover in another perspective [7], i.e., what is the minimum rate of the relay-destination link such that the maximum message rate can be achieved?
We try to answer this Cover's problem in this thesis. First, a sufficient rate to achieve the maximum message rate can be obtained by Slepian-Wolf coding, which gives us an
upper bound on the optimal relay-destination link rate. In this thesis, we show that under some channel conditions, this sufficient condition is also necessary, which implies
that Slepian-Wolf coding is already optimal. Hence, the upper bound meets exactly the minimum value of the required rate. In our approach, we start with the standard converse proof. First, we present a necessary condition for achieving the maximum message rate in the single-letter form. Following the condition, we derive a theorem, which is named as "single-letter criterion". The "single-letter criterion" can be easily utilized to verify different channels. Then we show that for two special cases: when the source-relay link and the source-destination link of the relay channel are both binary symmetric channels (BSCs), and when they are both binary erasure channels (BECs), Slepian-Wolf coding is optimal in achieving the maximum message rate. Moreover, the maximum message rates
of these two special channels are also calculated in this thesis.
|
6 |
Video transmission over a relay channel with a compress-forward code designPolapragada, Chaitanya 15 May 2009 (has links)
There is an increasing demand to support high data rate multimedia applications over the current day wireless networks which are highly prone to errors. Relay channels, by virtue of their spatial diversity, play a vital role in meeting this demand without much change to the current day systems. A compress-forward relaying scheme is one of the exciting prospects in this regard owing to its ability to always outperform direct transmission. With regards to video transmission, there is a serious need to ensure higher protection for the source bits that are more important and sensitive. The objective of this thesis is to develop a practical scheme for transmitting video data over a relay channel using a compress-forward relaying scheme and compare it to direct and multi-hop transmissions. We also develop a novel scheme whereby the relay channel can be used as a means to provide the required unequal error protection among the MPEG-2 bit stream. The area of compress-forward (CF) relaying has not been developed much to date, with most of the research directed towards the decode-forward scheme. The fact that compress-forward relaying always ensures better results than direct transmission is an added advantage. This has motivated us to employ CF relaying in our implementation. Video transmission and streaming applications are being increasingly sought after in the current generation wireless systems. The fact that video applications are bandwidth demanding and error prone, and the wireless systems are band-limited and unreliable, makes this a challenging task. CF relaying, by virtue of their path diversity, can be considered to be a new means for video transmission. To exploit the above advantages, we propose an implementation for video transmission over relay channels using a CF relaying scheme. Practical gains in peak signal-to-noise ratio (PSNR) have been observed for our implementation compared to the simple binary-input additive white Gaussian noise (BIAWGN) and two-hop transmission scenarios.
|
7 |
Investigation on the Compress-and-Forward Relay SchemeZhang, Jie January 2012 (has links)
The relay channel plays an integral role in network communication systems. An intermediate node acts as a relay to facilitate the communication between the source and the destination. If the rate of codewords is less than the capacity of the source-relay link, the relay can decode the source's messages and forward them to the destination. On the contrary, if the rate of codewords is greater than the capacity of the source-relay link, the
relay cannot decode the messages. Nevertheless, the relay can still compress its observations and then send them to the destination. Obviously, if the relay-destination link is
of a capacity high enough such that the relay's observations can be losslessly sent to the destination, then the maximum message rate can be achieved as if the relay and the destination can jointly decode. However, when the relay-destination link is of a limited capacity
such that the relay's observation cannot be losslessly forwarded to the destination, then what is the maximum achievable rate from the source to the destination? This problem was formulated by Cover in another perspective [7], i.e., what is the minimum rate of the relay-destination link such that the maximum message rate can be achieved?
We try to answer this Cover's problem in this thesis. First, a sufficient rate to achieve the maximum message rate can be obtained by Slepian-Wolf coding, which gives us an
upper bound on the optimal relay-destination link rate. In this thesis, we show that under some channel conditions, this sufficient condition is also necessary, which implies
that Slepian-Wolf coding is already optimal. Hence, the upper bound meets exactly the minimum value of the required rate. In our approach, we start with the standard converse proof. First, we present a necessary condition for achieving the maximum message rate in the single-letter form. Following the condition, we derive a theorem, which is named as "single-letter criterion". The "single-letter criterion" can be easily utilized to verify different channels. Then we show that for two special cases: when the source-relay link and the source-destination link of the relay channel are both binary symmetric channels (BSCs), and when they are both binary erasure channels (BECs), Slepian-Wolf coding is optimal in achieving the maximum message rate. Moreover, the maximum message rates
of these two special channels are also calculated in this thesis.
|
8 |
Physical-Layer Network Coding for MIMO SystemsXu, Ning 05 1900 (has links)
The future wireless communication systems are required to meet the growing demands of reliability, bandwidth capacity, and mobility. However, as corruptions such as fading effects, thermal noise, are present in the channel, the occurrence of errors is unavoidable. Motivated by this, the work in this dissertation attempts to improve the system performance by way of exploiting schemes which statistically reduce the error rate, and in turn boost the system throughput. The network can be studied using a simplified model, the two-way relay channel, where two parties exchange messages via the assistance of a relay in between. In such scenarios, this dissertation performs theoretical analysis of the system, and derives closed-form and upper bound expressions of the error probability. These theoretical measurements are potentially helpful references for the practical system design. Additionally, several novel transmission methods including block relaying, permutation modulations for the physical-layer network coding, are proposed and discussed. Numerical simulation results are presented to support the validity of the conclusions.
|
9 |
On Using D2D Collaboration and a DF-CF Relaying Scheme to Mitigate Channel InterferenceHassan, Osama 12 1900 (has links)
Given the exponentially increasing number of connected devices to the network which will lead to a larger number of installed celluar towers and base stations that are in closer proximity to one another when compared to the current cellular network setup, and the increasing demand of higher data rates by end users, it becomes essential to investigate new methods that will more effectively mitigate the larger interference introduced by the more packed celluar grid and that result in higher data rates. This paper investigates using Device-to-Device communication where neighboring users can cooperate to mitigate the correlated interference they both receive, where one user acts as a relay and the other as the intended destination of a broadcast message sent by the source base station. The setup studied utalizes a non-orthogonal multiple access (NOMA) scheme and a combined decode-forward and compress-forward relaying scheme. We show that this combined scheme outperforms the individual schemes for some channels and network setups, or reduces to either scheme when the combination does not offer any achievable rate gains. The performance of each scheme is measured with respect to the locations of the base station and the two devices, and to the capacity of the digital link between the users.
|
10 |
Link Reliability in Cooperative Relaying Using Network CodingAhsin, Tafzeel ur Rehman January 2010 (has links)
Demand for high data rates is increasing rapidly for future wireless systems.This trend is due to the increase in the number of mobile subscribers that need bandwidth hungry multimedia applications anywhere, anytime. Fourth generation cellular systems like IMT-advanced are being developed to meet these requirements. The unreliable nature of the wireless medium is one of the main hinderance in providing high data rates. Cooperative communication in cellular networks is emerging as a new paradigm to deal with the channel impairments. User cooperation via fixed relays in cellular systems form multiple access relay channels (MARCs) and provide an effective and cost efficient solution to achieve spatial diversity gains. Network resources can be utilized efficiently by using network coding at cooperating nodes. A lot of research work has focused on highlighting the gains achieved by using network coding in MARCs. However, there are certain areas that are not fully explored yet. For instance, the kind of the detection scheme used at the base station receiver and its impact on the link performance has not been addressed. In most cases, the outage probability has been used as a performance measure of MARCs. However, it is well known that the outage probability gives information about the signal availability, but it does not give the complete picture about the reliability of the link and the achieved quality of service. This thesis work looks at the link performance, in terms of symbol error probability, of multiple access relay channels that employ network coding at the relay node. Different types of detection schemes are considered and their performance is compared under different link conditions. Analytical expressions for the average symbol error probability of the cooperating users are derived. Focusing on the uplink of cellular systems, certain rules are devised on how to group users at relay node to ensure mutual benefit for the cooperating users. As a way of improving the link performance of multiple access relay channels and their robustness, the thesis considers constellation selection for the different branches. This method takes advantage of the redundancy between the transmitted symbols created by network coding and the augmented signal space obtained at the base station receiver. The obtained results show that, with a proper selection of the constellation sets, the link performance of MARCs can be improved. The thesis further looks at the interaction between the channel coding schemes of the cooperating users and network coding. It is shown that joint channel-network coding in MARCs can be seen as a product code. This new representation provides considerable flexibility in selecting efficient decoding algorithms at the base station receiver and gives the possibility to use more powerful network coding schemes for MARCs. / QC 20101118 / Sino-Swedish Cooperative Program: IMT-Advanced and Beyond
|
Page generated in 0.0539 seconds