• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of hypoxia-regulated microRNA in cancer

McCormick, Robert Iain January 2012 (has links)
MicroRNAs (miRNAs) are short, non-coding RNA sequences which regulate gene expression. Regulation is mediated primarily through binding to complementary sites in their un-translated regions which leads to mRNA degradation or translational repression. Hypoxia is a known feature of many tumours, and increased hypoxia is associated with poor prognosis. Hypoxia leads to the up-regulation of many genes involved in a variety of functions including angiogenesis, a shift to glycolytic metabolism, and cell proliferation. This is mediated by the heterodimeric transcription factor HIF (hypoxia inducible factor), which is stabilised in hypoxia. In normoxia, the von-Hippel Lindau protein (VHL) targets HIF for degradation. Mutation in the VHL gene, as is frequently seen in clear cell renal cell cancer (CCRCC), results in constitutive over-expression of HIF and its gene targets, leading to a pro-angiogenic and pro-tumourigenic state. This thesis examined the expression of hypoxia-regulated miRNAs in cancer. The principal aims were to determine gene targets of miR-210, and to explore the effects of its over-expression and knock-down, both in vitro and in vivo. The expression of hypoxia-regulated miRNAs was examined in clinical renal tumour samples with matched normal tissue controls, and correlated with VHL mutation status. It was found that miR-210 targeted the iron sulphur cluster homologue (ISCU) gene, and was responsible for much of its down-regulation in hypoxia. Knock-down of ISCU had consequences on cell metabolism, in particular involving mitochondrial function and iron metabolism. miR-210 was found to be highly over-expressed in clear cell renal tumours (CCRCC), with greater expression seen in tumours with VHL mutations. miR-210 over-expression was also observed in papillary renal tumours, but to a lesser extent than in CCRCCs. miR-210 expression appeared to be correlated with reduced stage and grade, and improved survival. ISCU protein expression in CCRCCs was determined by immunohistochemistry, which showed that its expression correlated negatively with miR-210 expression, suggesting a functional role of miR-210 in vivo.
2

Role of MINAR1 in renal cancer

Sutherland, Evan Graham 17 June 2019 (has links)
Renal cell carcinoma is a high risk and high mortality cancer. While the VHL pathway is frequently altered in renal cell carcinoma, emerging evidences points towards involvement of multiple complex pathways in the progression of renal cell carcinoma. In this present work, we aimed to investigate the role of newly identified protein, Major Intrinsically disordered NOTCH2-Associated Receptor 1 (MINAR1), in renal cell carcinoma. We used immunohistochemistry and demonstrated that MINAR1 is highly expressed in normal kidney epithelium. Furthermore, MINAR1 was expressed at variable levels in human renal cell carcinoma cell lines. More importantly, we found that MINAR1 was significantly downregulated in human samples of renal cell carcinoma. Although further studies are needed, our data suggests a potential role for MINAR1 in renal biology. Given that MINAR1 expression appears to be downregulated in renal cancer patients, it is suggestive that MINAR1 could function as a tumor suppressor. / 2020-06-17T00:00:00Z
3

The role of Jade-1 in DNA mismatch damage and repair in renal cancer

Tian, Ruoyu 20 June 2016 (has links)
The von Hippel-Lindau (VHL) tumor suppressor pVHL is lost in 90% of clear-cell renal-cell carcinomas (ccRCCs). Jade-1 is a renal tumor suppressor that is normally stabilized by pVHL. MutS Homolog2 (MSH2) is a key initiator in DNA mismatch repair (MMR). Defects in MMR are associated with genome-wide instability and predisposition to certain types of cancer. Mass spectrometry data of immunoprecipitated Flag-tagged Jade-1 lysates showed signal for MSH2, suggesting Jade-1 may participate in MMR. Here, we confirmed an interaction between endogenous MSH2 and endogenous Jade-1 by coimmunoprecipitation. Using cell fractionation, we found that MSH2 and Jade-1 translocated to the nucleus in response to alkylating agent MNNG in kidney proximal tubule cells. We also visualized the translocation of Jade-1 by immunofluorescence. Silencing JADE1 also influenced the kinetics of MSH2 translocation. In addition, by colony forming assay, JADE1-silenced cells were resistant to mismatch damage induced by MNNG, which is a feature of cells with an MMR defect. Furthermore, reintroducing pVHL into renal cancer cells also changed the amount of translocated MSH2 and Jade-1. In contrast to wild-type mice, Jade1 heterozygous mice got spontaneous tumors, and those tumors continued to show heterozygosity for Jade1. Taken together, our results identify a mechanism for Jade-1 regulation of MMR through its nuclear translocation. pVHL may also contribute to MSH2 and Jade-1 translocation by increasing Jade-1 abundance. These findings establish an early role for Jade-1 in MMR, provide further indication that Jade-1 helps maintain genomic stability in the kidney and support that Jade-1 is a haploinsufficient renal tumor suppressor.
4

The value of hepatic resection in metastasic renal cancer in the era of Tyrosinkinase Inhibitor Therapy

Hau, Hans Michael, Thalmann, Florian, Lübbert, Christoph, Morgul, Mehmet Haluk, Schmelzle, Moritz, Atanasov, Georgi, Benzing, Christian, Lange, Undine, Ascherl, Rudolf, Ganzer, Roman, Uhlmann, Dirk, Tautenhahn, Hans-Michael, Wiltberger, Georg, Bartels, Michael 22 July 2016 (has links) (PDF)
Background: The value of liver-directed therapy (LDT) in patients with metastasic renal cell carcinoma (MRCC) is still an active field of research, particularly in the era of tyrosinkinase inhibitor (TKI) therapy. Methods: The records of 35 patients with MRCC undergoing LDT of metastasic liver lesions between 1992 and 2015 were retrospectively analyzed. Immediate postoperative TKI was given in a subgroup of patients after LDT for metastasic lesions. Uni- and multivariate models were applied to assess overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS). Results: Following primary tumor (renal cell cancer) resection and LDT, respectively, median OS was better for a total of 16 patients (41 %) receiving immediate postoperative TKI with 151 and 98 months, when compared to patients without TKI therapy with 61 (p = 0.003) and 40 months (p = 0.032). Immediate postoperative TKI was associated with better median PFS (47 months versus 19 months; p = 0.023), whereas in DFS only a trend was observed (51 months versus 19 months; p = 0.110). Conclusions: LDT should be considered as a suitable additive tool in the era of TKI therapy of MRCC to the liver. In this context, postoperative TKI therapy seems to be associated with better OS and PFS, but not DFS.
5

Genome-wide mapping of the hypoxic response

Schödel, Johannes January 2012 (has links)
Hypoxia regulates many hundreds of genes with important roles in ischemic and neoplastic disorders. Central to this response are the hypoxia inducible transcription factors (HIF). This work aimed to better understand the direct transcriptional response to HIF by mapping HIF-binding sites across the genome using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq). ChIP-seq for HIF in MCF-7 breast cancer cells under hypoxic conditions revealed more than 400 high-stringency HIF-binding sites genome-wide. Each member of the HIF heterodimer was present with near complete concordance. Binding of the two principle isoforms revealed a high degree of overlap with no differences in the DNA-binding motif. HIF-binding was associated with upregulation, but not downregulation of genes indicating that it functions as a transcriptional activator but not as a repressor. HIF-binding occurred preferentially at gene promoters, but was also present at promoter-distant sites, which were also associated with gene regulation, implicating long-range interactions in hypoxic gene activation. HIF-binding was associated with markers of open chromatin and active enhancers that were present in normoxia, indicating that HIF-binding sites are already “prepared” to bind HIF before the hypoxic stimulus. Analysis of normoxic and hypoxic RNA pol2 and H3K4me3 signals revealed distinctive hypoxia-inducible changes unique to HIF-binding genes. Comparable numbers of HIF-binding sites were observed in a second cell line (von Hippel-Lindau defective 786-O renal cancer cells) as in MCF-7 breast cancer cells, although approximately 65% were unique to 786-O cells. These unique sites were more frequently promoter-distant. Correlation with expression analyses from renal tumours indicated that many HIF-binding genes were upregulated in renal cancer. One such RCC unique promoter-distant HIF-binding site was identified at an intergenic locus on chromosome 11q13.3 that has been associated with renal cancer in Genome-Wide Association Studies. The HIF-binding site was in high linkage disequilibrium with the disease associated SNP and had the epigenetic hallmarks of an enhancer. Analysis of pan-genomic expression analyses identified the cell-cycle regulator cyclin D1 as highly HIF-regulated, and a physical association between the HIF-binding site and the CCND1 promoter could be determined. Furthermore, in a renal cancer cell line heterozygous at this locus, the RCC-protective allele disrupted HIF-binding leading to an allelic imbalance in cyclin D1 expression.
6

Connecting Chemical and Omics Domains for Drug Discovery and Repurposing

Reigle, James K., M.S. 05 October 2021 (has links)
No description available.
7

The value of hepatic resection in metastasic renal cancer in the era of Tyrosinkinase Inhibitor Therapy

Hau, Hans Michael, Thalmann, Florian, Lübbert, Christoph, Morgul, Mehmet Haluk, Schmelzle, Moritz, Atanasov, Georgi, Benzing, Christian, Lange, Undine, Ascherl, Rudolf, Ganzer, Roman, Uhlmann, Dirk, Tautenhahn, Hans-Michael, Wiltberger, Georg, Bartels, Michael January 2016 (has links)
Background: The value of liver-directed therapy (LDT) in patients with metastasic renal cell carcinoma (MRCC) is still an active field of research, particularly in the era of tyrosinkinase inhibitor (TKI) therapy. Methods: The records of 35 patients with MRCC undergoing LDT of metastasic liver lesions between 1992 and 2015 were retrospectively analyzed. Immediate postoperative TKI was given in a subgroup of patients after LDT for metastasic lesions. Uni- and multivariate models were applied to assess overall survival (OS), progression-free survival (PFS) and disease-free survival (DFS). Results: Following primary tumor (renal cell cancer) resection and LDT, respectively, median OS was better for a total of 16 patients (41 %) receiving immediate postoperative TKI with 151 and 98 months, when compared to patients without TKI therapy with 61 (p = 0.003) and 40 months (p = 0.032). Immediate postoperative TKI was associated with better median PFS (47 months versus 19 months; p = 0.023), whereas in DFS only a trend was observed (51 months versus 19 months; p = 0.110). Conclusions: LDT should be considered as a suitable additive tool in the era of TKI therapy of MRCC to the liver. In this context, postoperative TKI therapy seems to be associated with better OS and PFS, but not DFS.
8

Sickle Cell Trait and Genetic Counseling

Salmon Anderson, Tricia 01 January 2017 (has links)
Sickle cell trait (SCT) is a very prevalent disorder in the United States, especially among African Americans or people of African descent. However, even with the prevalence of the disorder, there are no standardized guidelines for providing patients with information about SCT and the implications of the disorder at physicals and well-check visits. The purpose of this evidence-based project was to increase awareness for African American patients 18-44 years old in the practice setting about SCT and to provide options for testing and genetic counseling. Kotter's contemporary change theory was used as a guide to implement the new practice approach. A quasi-experimental, single-group, pretest-posttest-only design was used to explore the relationship between providing consistent SCT education and the impact on the rate of SCT screening and genetic counseling. A total of 71 patients participated in the program. The analysis showed a significant (p < 0.001) mean difference of 18.16 points from the preintervention SCT and genetics test mean, which indicated that the intervention was successful in raising SCT and genetics knowledge scores among the target population. The results demonstrated that the implementation of SCT education in the practice setting can enhance social implications related to SCT awareness and opportunities for SCT testing and genetic counseling. The implementation of SCT clinical guidelines can help to increase awareness about SCT and improve the overall population health and reduce the financial burden affiliated with care of those with sickle cell disease and SCT complications.
9

Protéine-kinases et cancer du rein : Découverte et validation d’une nouvelle combinaison d’inhibiteurs ciblant les protéine-kinases ATM et CK2 / Protein kinases and renal carcinoma : discovery and validation of a novel combinational target therapy through co-inhibition of CK2 and ATM kinases

Giacosa, Sofia 14 October 2016 (has links)
L’incidence du cancer du rein et sa mortalité associée se sont accrues au cours des dernières années. Le type de cancer rénal le plus fréquent est celui nommé Cancer Rénal à Cellules Claires (CRCC) où le plus souvent, le gène suppresseur de tumeur Von Hippel Lindau (VHL) est inactivé. Malgré une détection plus précoce, l’évolution de la pathologie demeure incertaine, en particulier quand les patients développent des métastases ou acquièrent une résistance au traitement (25-30% des patients). De nouvelles thérapies ciblant des kinases (Sunitinib, Sorafenib ou Temsirolimus) bien que très prometteuses conduisent très souvent à l’acquisition de résistance. Dans ce contexte, il est urgent de développer de nouveaux modèles prédictifs de la réponse des patients aux traitements et d'identifier de nouvelles cibles thérapeutiques.Ma thèse de science visait trois objectifs complémentaires : 1) Identifier par criblage chimio-génomique des kinases comme cibles thérapeutiques combinées. 2) Etablir deux modèles de culture 3D de cancer du rein qui intègrent le microenvironnement d’une tumeur: les sphéroïdes et la culture organotypique de coupe de tissus. 3) Etudier la chimio-sensibilité de ces modèles à une combinaison de molécules identifiées dans le criblage.Un criblage cellulaire a été réalisé sur la plateforme de Criblage de Molécules BioActives (CEA- Grenoble). Il a consisté à tester 80 molécules inhibitrices de protéine-kinases en combinaison avec l’extinction génique par interférence ARN (shRNAs lentiviraux) de 36 cibles potentielles connues pour leur implication dans divers cancers. La lignée cellulaire choisie (786-O) est dérivée d’une tumeur rénale à cellules claires radio et chimio-résistante et dépourvue de VHL. Parmi les touches qui compromettent la viabilité des cellules 786-O, la combinaison choisie pour son efficacité cible deux kinases importantes dans le contrôle de la survie cellulaire et de la réparation de l’ADN CK2 et ATM. Le statut VHL des cellules module de façon dramatique leur sensibilité à cette combinaison, l’association de ces deux inhibiteurs étant plus efficace sur les cellules 786-O (VHL -) que sur les mêmes cellules dans lesquelles VHL a été réintroduit (VHL+). Au sein d’une tumeur, les différents niveaux d’oxygénation constituent une variation environnementale supplémentaire créant des susceptibilités ou des résistances aux traitements thérapeutiques. Pour déterminer l’impact de nos molécules dans ce contexte, nous avons testé la viabilité des cellules 786-O VHL+ et VHL- dans des conditions normoxiques (21% O2) ou hypoxiques (1,5% O2), en présence des molécules seules ou en combinaison. En normoxie, une diminution synergique de la viabilité des cellules 786-O VHL- est observée en présence de la combinaison, alors que cet effet n’a pas lieu sur les cellules 786-O VHL+. Cette synergie est potentialisée en condition hypoxique. Au niveau mécanistique, les voies de signalisation de stress cellulaires sont d’avantage activées dans les cellules VHL- en présence de la combinaison de molécules comparé au traitement avec chacune des molécules seules. Dans les sphéroïdes tumoraux multicellulaires reproduisant l’organisation d’une micro-tumeur, nos résultats montrent que notre combinaison de molécules induit d’avantage l’apoptose des cellules VHL- que les molécules seules, alors que les cellules VHL+ ne sont sensibles à aucun des traitements.Ces résultats montrent que l’action de nos molécules combinées est clairement plus efficace dans un modèle 3-D. Ils démontrent également qu’il est possible d’objectiver une pharmaco-modulation de la viabilité de cultures organotypiques de tumeur du rein par des combinaisons d’inhibiteurs chimiques de protéine-kinases. Les perspectives de ce travail sont la validation de cette combinaison sur des tumeurs humaines et l’exploitation des cultures organotypiques comme test personnalisé de réponse aux traitements. / Renal cell carcinoma accounts for 3% of all malignant diseases in adults making it the 10th most common cancer in France. The most frequent type of Kidney cancer is Clear Cell Renal Cell Carcinoma (CCRCC). Almost all CCRCC show an inactivation of the Von Hippel Lindau tumour suppressor gene (VHL). Between 25-30% of the patients will develop metastatic renal cell carcinoma (mRCC) by the time they are diagnose or become unresponsive to all treatments and in these cases, the disease has a rapid progression. Over the past years, kinase-targeted therapies (Sunitinib, Sorafenib, Temsirolimus) have become the mainstay of treatment for mRCC, however, most, if not all, patients acquire resistance to these approaches over time.In this context my PhD had 3 goals: a) to find a new combinatory targeted therapy through a High Throughput Screening; b) to establish 3D models mimicking the real environment of the tumours (spheroids, Tissue Slice Culture); c) to validate the Hits through different molecular and cellular biology studies.We conducted a synthetic lethal screen on the CMBA platform (CEA-Grenoble), choosing 36 potential genes targets and 80 kinases inhibitors drugs. Each of the target gene was silenced by a transduction with shRNA Lentivirus into the 786-O cell line derived from ccRCC that lacks the tumour suppressor VHL, is radio- and chemo-therapy resistant, has increased mobility and is highly metastatic. Among the hit combinations that affect cell viability, one of them was chosen because it targets two important kinases involved in cell survival and DNA repair: CK2 and ATM. Moreover, this combination is specifically more active in the 786-O VHL- cells than in 786-O VHL+ cell line. We evaluated the effect of our drugs on the viability of our 786-O VHL+ and VHL- cells in normoxic (21% O2) or hypoxic (1.5% O2) conditions that reflect different environments that are present in a tumour. Surprisingly, in normoxia, we found a synergetic effect of the drug mix only on the 786-O VHL- cells but not on 786-O VHL+ cells. Furthermore, this effect was even stronger in conditions of Hypoxia (up to 20% of synergism).Mechanistically, an up-regulation of the stress pathways was much stronger in the VHL- cells in the presence of the combination than with the drugs alone. No apoptosis was detected in this 2D models. In Multi-Cellular Tumour Spheroid (MCTS) where the organization of a micro-tumour is reproduced, our drugs are even more effective in inducing cell apoptosis than in 2D monolayers of 786-O VHL- cells. These results also demonstrate that pharmaco-modulation of viability of renal tumour organotypic culture by chemical combination targeting protein kinases can be studied. Perspectives of this work are the validation of this drug combination on human renal tumours and the use of organotypic culture as a test for personalized treatment response.
10

Ouabain Toxicity -Selectivity Towards Renal Cancer Cells

Magnusson, Emma January 2020 (has links)
Ouabain and other cardiotonic steroids are known to inhibit Na + ,K + -ATPase (NKA), theion pump responsible for the ionic gradient across the plasma membrane. These steroidsdisplay a selective toxicity towards several tumour cells in comparison to primary humancells, however, the mechanism behind this is not yet understood. Here, we examined theouabain toxicity in renal epithelial cells, proximal tubular cells (PTCs) of different origin. Weinvestigated the relative cytotoxicity in cancer cells (A-498) and papilloma virus-transformedPTCs (HK-2) as well as to primary human PTCs (hPTC) to validate key components in theeffect. In exposure to ouabain, we examined the cell viability and density by MTT and CrystalViolet assays, and cell migration by a scratch assay. The cytotoxic effect was also studied invarious pH, glucose and potassium ion concentrations. In addition, apoptosis was examinedby the TUNEL assay, and if ouabain kills cancer cells through activation of thevolume-regulated anion channel VRAC channel via NKA. We found that there is a decrease in viable cells when cells are exposed to ouabain ≥ 10nM, however, the effect was not seen to be selective towards cancer cells, nor due toapoptosis and the activation of VRAC. The cytotoxic effect was greater in more acidicextracellular pH ~6.8, but independent of glucose concentration in the medium. Interestingly,the effect was also reversed at an increased extracellular concentration of potassium, andouabain did selectively inhibit the cancer cells to migrate. Thus, there could be potential forouabain to act as an anti-cancer agent for renal cancer and to inhibit tumour metastasization. / Ouabain och andra kardiotoniska steroider är kända för att inhibera Na + ,K + -ATPas (NKA),membranpumpen som är ansvarig för den aktiva jontransporten av natrium och kalium ochjongradienten över plasmamembranet. De har påvisat en selektiv toxicitet mot vissatumörceller i jämförelse med primära humana celler, men det är dock inte förstått hurmekanismen bakom denna företeelse fungerar. I denna studien undersökte vi ouabainstoxicitet i njurcancerceller (A-498) och papillomavirustransformerade proximala tubuliceller(hPTC) för att identifiera effektens nyckelkomponenter. Vid exponering av ouabain undersökte vi cellviabiliteten och -densiteten genom MTT- ochkristallviolett-analyser, samt cellmigrering genom scratch-analys. Den cytotoxiska effektenstuderades också under olika pH-förhållanden samt glukos- och kaliumkoncentrationer.Dessutom undersöktes det om apoptos orsakar celldöd genom TUNEL-analys, och omouabain dödar njurcancerceller genom aktivering av den volymreglerade anjonkanalen(VRAC) via NKA. Vi fann minskning av cellernas livskraft vid exponering av ≥ 10 nM ouabain, men effektentycktes dock inte se ut att vara selektiv gentemot cancerceller, inte heller på grund av apoptosoch aktivering av VRAC. Den cytotoxiska effekten var större vid lägre pH, men oberoendeav mediets glukoskoncentrationen. Intressant nog motverkades också effekten vid förhöjdkoncentration av kaliumjoner, och ouabain hämmade selektivt cancercellerna att migrera.Således finns det en viss potential för ouabain att kunna fungera som ett anticancermedel motnjurcancer och att hämma metastasutveckling.

Page generated in 0.0429 seconds