Spelling suggestions: "subject:"reperfusion"" "subject:"eperfusion""
441 |
Impact of Subnormothermic Machine Perfusion Preservation in Severely Steatotic Rat Livers: A Detailed Assessment in an Isolated Setting / 高度脂肪肝グラフトに対する室温灌流保存法の有効性:ラット肝体外灌流評価系による検討Okamura, Yusuke 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20274号 / 医博第4233号 / 新制||医||1021(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 福田 和彦, 教授 妹尾 浩 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
442 |
Preventive Effect of Antioxidative Nutrient‐Rich Enteral Diet Against Liver Ischemia and Reperfusion Injury / 肝虚血再灌流障害に対する抗酸化栄養素強化食の保護効果Miyauchi, Tomoyuki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21648号 / 医博第4454号 / 新制||医||1034(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 妹尾 浩, 教授 小池 薫, 教授 Shohab YOUSSEFIAN / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
|
443 |
Human Atrial Natriuretic Peptide in Cold Storage of Donation after Circulatory Death Rat Livers: An Old but New Agent for Protecting Vascular Endothelia? / ヒト心房性ナトリウム利尿ペプチド (hANP)の保存液添加は、心停止後摘出肝臓の血管内皮保護効果を介して冷虚血/温再灌流傷害を軽減するYERMEK, NIGMET 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21658号 / 医博第4464号 / 新制||医||1035(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊達 洋至, 教授 福田 和彦, 教授 湊谷 謙司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
444 |
Vztah reperfuze plicních tepen po akutní plicní embolii k rozvoji chronické tromboembolické plicní hypertenze. / Relation between the reperfusion of pulmonary arteries after an acute pulmonary embolism to the development of chronic thromboembolic pulmonary hypertension.Mrózek, Jan January 2019 (has links)
Relation between the reperfusion of pulmonary arteries after acute pulmonary embolism to the development of chronic thromboembolic pulmonary hypertension Incomplete resolution of thromboemboli following acute pulmonary embolism (PE) is a key factor in development of chronic thromboembolic pulmonary hypertension (CTEPH). In our study, we evaluated the incidence, risk factors and clinical impact of incomplete reperfusion after acute PE. Study population and methods: 85 patients after the first acute PE were assessed clinically and by pulmonary scintigraphy and echocardiography at month 6, 12 and 24 after an acute PE. Results: Incomplete reperfusion was detected in 23.5 % of patients after 6 months, in 24.9 % of patients after 12 months and in 18.6 % of patients after 24 months. At month 6, patients with incomplete reperfusion were more obese when compared with patients with normal reperfusion BMI 30.8 vs 28.3 kg/m2 ; p=0.012) and their initial hemoglobin levels were higher (143.0 vs 136.0 g/l; p=0.012). Similar results were observed at month 12 - patients with residual perfusion defects were more obese (BMI 31.1 vs 28.5; p=0.016) with higher initial hemoglobin levels (144.0 vs 136.0; p=0.007). Patients with incomplete reperfusion at month 24 were significantly older (67.7 vs 55.0 years; p=0.02), their...
|
445 |
Regulation of EphA2 expression in renal ischemia-reperfusion injuryDu, Xiaojian. January 2009 (has links)
No description available.
|
446 |
Bolus Administration of Polyamines Boosts Effects on Hepatic Ischemia-Reperfusion Injury and Regeneration in Rats / ポリアミンのボーラス投与はラットにおける肝虚血再還流障害と肝再生に対するポリアミンの効果を向上させるDoi, Junshi 24 November 2021 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13449号 / 論医博第2242号 / 新制||医||1054(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 妹尾 浩, 教授 柳田 素子 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
447 |
Adenosine and a<sub>1</sub> Selective Agonists Offer Minimal Protection Against Ischaemic Injury to Isolated Rat CardiomyocytesGanote, Charles E., Armstrong, Stephen, Downey, James M. 01 January 1993 (has links)
Objective: The aim was to determine if isolated rat cardiomycytes could be protected from ischaemic cell death by preincubation with adenosine or adenosine agonists. Methods: Cardiomyocytes isolated from rat hearts were preincubated in the presence of adenosine, CCPA (2-chloro-N6-cyclopentyladenosine), or carbachol prior to concentration into an ischaemic slurry. Effects of glycolysis and of isoprenaline were determined by addition of iodoacetic acid or isoprenaline to the ischaemic incubates and by exclusion of glucose from all media. Rates of ischaemic contracture were determined and survival of the myocytes versus paired control preparations was determined after various times of ischaemia, following resuspension of the cells in isotonic or hypotonic media. Results: Adenosine and CCPA produced only a small reduction of the rates of contracture and death of isolated myocytes. Carbachol gave no significant protection. Neither the degree of injury of control cells nor the amount of protection by CCPA was altered in the presence of added isoprenaline. Protection was abolished by the A1 receptor blocker sulphophenyl theophylline, iodoacetic acid, and exclusion of glucose. Conclusions: Adenosine and adenosine agonists afford a minimal degree of protection to ischaemic isolated myocytes by a glucose dependent mechanism. This protection does not appear to account for the larger degree of protection seen in intact hearts, following similar preconditioning protocols. The failure of adenosine to protect may be related to the quiescent state of isolated cardiomyocytes, or be species specific in that adenosine may not be the trigger for preconditioning in rats.Cardiovascular Research 1993;27:1670-1676.
|
448 |
MicroRNA-128-1-5p Attenuates Myocardial Ischemia/Reperfusion Injury by Suppressing Gadd45g-Mediated Apoptotic SignalingWan, Xiaoya, Yao, Bifeng, Ma, Yeshuo, Liu, Yaxiu, Tang, Yao, Hu, Jia, Li, Mingrui, Fu, Shuang, Zheng, Xinbin, Yin, Deling 10 September 2020 (has links)
Myocardial ischemia/reperfusion (I/R) injury is a clinically fatal disease, caused by restoring myocardial blood supply after a period of ischemia or hypoxia. However, the underlying mechanism remains unclear. Recently, increasing evidence reveal that microRNAs (miRs) participate in myocardial I/R injury. This study aimed to investigate whether miR-128-1-5p contributed to cardiomyocyte apoptosis induced by myocardial I/R injury. Here, we showed that the expression of miR-128-1-5p was decreased in mice following myocardial I/R injury. Down-regulation of miR-128-1-5p was also showed in H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R), and in neonatal rat cardiomyocytes (NRCMs) with H2O2 treatment. Importantly, we found that overexpression of miR-128-1-5p ameliorates cardiomyocyte apoptosis both in H9c2 cardiomyocytes and NRCMs. Moreover, we also found that growth arrest DNA damage-inducible gene 45 gamma (Gadd45g) is identified as a direct target of miR-128-1-5p, which negatively regulated Gadd45g expression. Additionally, silencing of Gadd45g inhibits cardiomyocyte apoptosis in H9c2 cardiomyocytes and NRCMs. These results reveal a novel mechanism by which miR-128-1-5p regulates Gadd45g-mediated cardiomyocyte apoptosis in myocardial I/R injury.
|
449 |
Exogenous Ubiquitin: Role in Myocardial Inflammation and Remodeling Post- Ischemia/Reperfusion InjuryScofield, Stephanie 01 December 2017 (has links) (PDF)
Sympathetic stimulation occurs in the heart after injuries such as ischemia/reperfusion (I/R) and myocardial infarction and affects myocardial remodeling. Prolonged sympathetic stimulation can result in myocardial dysfunction through its effects on cardiac myocyte apoptosis and myocardial fibrosis. Ubiquitin (UB) is well known for its role of tagging old or damaged proteins for degradation via the UB-proteosome pathway. The role of exogenous UB however, is not fully understood. Previously, our lab showed that β-adrenergic receptor (β-AR) stimulation increased levels of extracellular UB in the conditioned media of adult rat ventricular myocytes and that UB inhibits β-AR-stimulated apoptosis. This study investigates the role of extracellular UB after myocardial I/R injury in terms of infarct size, function, inflammation and proteomic changes in vivo as well as the effects of extracellular UB on cardiac fibroblast function in vitro. First, we validated a method of consistently measuring real-time myocardial ischemia and reperfusion in vivo. Second, cardiac function was studied 3 days post I/R injury in the presence or absence of UB infusion. Echocardiographic analysis determined UB infusion increased cardiac function after I/R injury in terms of ejection fraction and fractional shortening. UB decreased infarct size and infiltration of inflammatory cells including neutrophils and macrophages as well as reduced activity of neutrophils. UB increased protein levels of matrix metalloproteinase (MMP)-2 and transforming growth factor-β1 and increased activity of MMP-9. Third, in adult rat primary cardiac fibroblasts, we demonstrate that extracellular UB interacts with CXCR-4. UB treatment decreased serum-mediated increases in fibroblast proliferation and enhanced the contraction of fibroblast-populated collagen gels. Thus, extracellular UB likely interacts with CXCR-4 to influence fibroblast function and proliferation. Additionally, UB influences cardiac remodeling in terms of heart function, infarct size, inflammatory response and proteomic profile.
|
450 |
Regulation of Mitochondrial Calcium Dynamics in Striated Muscle FunctionHuo, Jiuzhou 15 October 2020 (has links)
No description available.
|
Page generated in 0.1014 seconds