Spelling suggestions: "subject:"reperfusion"" "subject:"eperfusion""
411 |
Complement 5 inhibition ameliorates hepatic ischemia/reperfusion injury in mice, dominantly via the C5a-mediated cascade / 補体C5阻害は、主にC5a経路の抑制を介してマウス肝虚血再灌流障害を抑制するKusakabe, Jiro 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22696号 / 医博第4640号 / 新制||医||1045(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 羽賀 博典, 教授 妹尾 浩, 教授 木村 剛 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
|
412 |
Causes of liver steatosis influence the severity of ischemia reperfusion injury and survival after liver transplantation in rats / 脂肪肝の成因が肝移植における虚血再灌流障害に与える影響Miyachi, Yosuke 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23055号 / 医博第4682号 / 新制||医||1048(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 妹尾 浩, 教授 伊達 洋至, 教授 長船 健二 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
413 |
The lectin-like domain of thrombomodulin is a drug candidate for both prophylaxis and treatment of liver ischemia and reperfusion injury in mice / トロンボモジュリンのレクチン様ドメインはマウス肝虚血再灌流障害に対する予防及び治療薬の候補となり得るKawasoe, Junya 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23072号 / 医博第4699号 / 新制||医||1049(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 浅野 雅秀, 教授 福田 和彦 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
414 |
Protective Effects of a Hydrogen-Rich Preservation Solution in a Canine Lung Transplantation Model / 犬肺移植モデルにおける水素含有臓器保存液の肺保存効果Kayawake, Hidenao 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23107号 / 医博第4734号 / 新制||医||1051(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 平井 豊博, 教授 湊谷 謙司, 教授 川口 義弥 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
415 |
Vliv methadonu na ischemickou toleranci srdce laboratorního potkana / The effect of methadone on cardiac ischemic tolerance in ratsMošovská, Linda January 2013 (has links)
Opioids are considered as a dangerous addictive substances which are widely used in medicine for their strong analgetic effects. Opioids (such as morphine and methadon) may nevertheless play an important role in the resistance of the heart to ischemia by reducing the rate of cell damage. This protective effect is well understood about morphine but we don't know almost nothing about effects of methadone on the myocardium. The main aim of this thesis was to find out how chronic methadone treatment affects ischemic tolerance of rat hearts. For our experiments we used Wistar rats in two series. In the first series we administered morphine (10 mg/kg/day, i.m.) or methadone (2 mg/kg/day, i.m.) for 10 days. In the second experiment series we administered methadon for 28 days (2 mg/kg/day, i.m.). For analysis of the ischemic heart tolerance we used the isolated perfused heart method. Incidence and severity of ischemia and reperfusion arrhythmias were analyzed during the 50 min of ischemia and early reperfusion. Infarct size was analyzed histochemically, using tetrazolium salts and KMnO4 1 h after reperfusion and was determined by planimetric method. In the first series of experiments analyzing the effect of 10-day administration of both opioids on the resistance of the heart to ischemia we did not find a...
|
416 |
Contribution of myeloid HO-1 to the modulation of renal ischemia-reperfusion injury: Effect of myeloid HO-1 induction with hemin as a preemptive treatment strategy against renal ischemia-reperfusion injuryRossi, Maxime 17 December 2020 (has links) (PDF)
Acute kidney injury (AKI) is a major public health concern, which contributes to serious hospital complications, chronic kidney disease (CKD) and even death. Renal ischemia- reperfusion injury (IRI) remains a leading cause of AKI.IRI combines major cell stress, significant burst of free radicals, and strong inflammatory responses leading to extensive cell injury, necrosis, and late interstitial fibrosis. Moreover, IRI- induced AKI releases pro-inflammatory cytokines (e.g. IL-1β, TNF-α, IL-6) that induce a systemic inflammatory response, resulting in pro-inflammatory cells recruitment and remote organ damage. AKI is associated with poor outcomes, particularly when extrarenal complications or distant organ injuries occur.The stress-responsive enzyme, heme oxygenase-1 (HO-1) mediates protection against renal IRI and may be preventively induced using hemin prior to renal insult. This HO-1 induction pathway called hemin preconditioning is largely known in the literature to be effective.We first confirmed that hemin-induced HO-1 improved renal outcomes after IRI (i.e. fewer renal damage, renal inflammation and oxidative stress). We then demonstrated that this protective pathway mitigated AKI-induced ALI, a major extrarenal complication after renal IRI, through modulation of systemic and lung inflammation.Afterwards, we focused on the specific contribution of myeloid HO-1 to renal IRI, which remains poorly characterized. We therefore investigated the contribution of myeloid HO-1 to renal IRI using mice with myeloid-restricted deletion of HO-1 (HO-1M-KO). We observed that myeloid HO-1 appeared to be a critical regulator of the earliest phases of IRI (i.e. higher plasma creatinine, tubular damage, and renal inflammation/oxidative stress in HO-1M-KO mice).As a link between the severity of renal injury and the risk maladaptive repair leading to CKD has been established, we thereby decided to focus on tubular repair and fibrosis deposition upon IRI. We identified that myeloid HO-1 prevented maladaptive repair and subsequent CKD through modulation of cell-cycle and autophagy regulatory proteins.We then showed that hemin-mediated protection requires specific expression of HO-1 within myeloid cells. We therefore identified CD11b+ F4/80lo macrophages as the main protective myeloid source of HO-1 upon renal IRI. Interestingly, we observed this myeloid cell sub- population in the kidney and spleen, suggesting that protective effects might be provided by both tissue-resident and infiltrating/circulating HO-1+ myeloid cells.Based on its promising cytoprotective effects when giving preemptively, we investigated the use of hemin-induced myeloid HO-1 as a strategy to mitigate established AKI. However, due to its chemical structure and oxidative properties, hemin worsened IRI-induced AKI. We thereby identified that hemin had a dual effect on renal IRI, protective or deleterious, depending on the timing of its administration.Altogether, this work suggests that myeloid HO-1 plays a critical role in the modulation of IRI- induced AKI by improving short- and long-term functional outcomes after renal IRI. We conclude that hemin-induced myeloid HO-1 pathway might be an efficient preventive strategy in many renal IRI situations with predictable AKI such as renal transplantation or partial nephrectomy. / Doctorat en Sciences médicales (Médecine) / info:eu-repo/semantics/nonPublished
|
417 |
Lack of Osteopontin Induces Systolic and Diastolic Dysfunction in the Heart Following Myocardial Ischemia/Reperfusion InjuryJames, Caytlin 01 May 2020 (has links)
Ischemic heart disease is a leading cause of death worldwide. Osteopontin (OPN), a cell-secreted extracellular matrix protein, is suggested to play a cardioprotective role in mouse models of ischemic heart disease. The objective of this study was to examine the role of OPN in modulation of systolic and diastolic functional parameters of the heart following mouse ischemia/reperfusion (I/R) injury. For this, wild-type (WT) and OPN-knockout (KO) mice aged approximately 4 months were subjected to cardiac ischemia for 45 minutes by the ligation of the left anterior descending coronary artery (LAD) followed by reperfusion of LAD by snipping the ligature. Heart function was measured using echocardiography at baseline, 1, 3, 7, 14, and 27 days post-I/R injury. M-mode echocardiographic images were used to calculate % fractional shortening [%FS], % ejection fraction [%EF], end-systolic volume [ESV], and end-diastolic volume [EDV], while pulsed wave Doppler images were used to measure aortic ejection time [AET], isovolumic relaxation time [IVRT], and total systolic time [TST]. Velocity of circumferential fiber shortening (Vcf) was calculated using FS and AET. I/R injury significantly decreased %EF and %FS in both WT and KO groups at all time points (1, 3, 7, 14, and 27 days post-I/R) versus the baseline. However, the decrease in % EF and %FS was significantly greater in KO-I/R group versus WT-I/R at 3, 7, 14 and 27 days post-I/R. I/R-mediated increase in ESV and EDV were significantly greater in KO-MI group versus WT-MI 3 day post-I/R. AET was significantly higher in WT-I/R group 27 days post-I/R versus baseline. However, AET was significantly lower in KO-I/R group 3 and 27 days post-I/R versus WT-I/R. IVRT was significantly higher in KO-I/R group 27 days post-I/R vs baseline. However, IVRT was significantly lower in KO-I/R group 1 day post-I/R vs WT-I/R. TST remained unchanged in WT and KO groups post-I/R versus their respective baseline groups. However, TST was significantly lower in KO-I/R group versus WT-I/R at 3 days post-I/R. Vcf was significantly higher at basal levels in the KO versus WT mice. I/R injury decreased Vcf in both groups versus their baseline at all time-points. These data provide evidence that lack of OPN deteriorates systolic and diastolic functional parameters of the heart following I/R injury, suggesting a cardioprotective role of OPN in myocardial remodeling post-IR.
|
418 |
MicroRNA-214 Protects Against Hypoxia/Reoxygenation Induced Cell Damage and Myocardial Ischemia/Reperfusion Injury via Suppression of PTEN and Bim1 ExpressionWang, Xiaohui, Ha, Tuanzhu, Hu, Yuanping, Lu, Chen, Liu, Li, Zhang, Xia, Kao, Race, Kalbfleisch, John, Williams, David, Li, Chuanfu 01 January 2016 (has links)
Background: Myocardial apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Activation of PI3K/Akt signaling protects the myocardium from I/R injury. This study investigated the role of miR-214 in hypoxia/ reoxygenation (H/R)-induced cell damage in vitro and myocardial I/R injury in vivo. Methods and Results: H9C2 cardiomyoblasts were transfected with lentivirus expressing miR-214 (LmiR-214) or lentivirus expressing scrambled miR-control (LmiR-control) respectively, to establish cell lines of LmiR-214 and LmiR-control. The cells were subjected to hypoxia for 4 h followed by reoxygenation for 24 h. Transfection of LmiR-214 suppresses PTEN expression, significantly increases the levels of Akt phosphorylation, markedly attenuates LDH release, and enhances the viability of the cells subjected to H/R. In vivo transfection of mouse hearts with LmiR-214 significantly attenuates I/R induced cardiac dysfunction and reduces I/Rinduced myocardial infarct size. LmiR-214 transfection significantly attenuates I/Rinduced myocardial apoptosis and caspase-3/7 and caspase-8 activity. Increased expression of miR-214 by transfection of LmiR-214 suppresses PTEN expression, increases the levels of phosphorylated Akt, represses Bim1 expression and induces Bad phosphorylation in the myocardium. In addition, in vitro data shows transfection of miR-214 mimics to H9C2 cells suppresses the expression and translocation of Bim1 from cytosol to mitochondria and induces Bad phosphorylation. Conclusions: Our in vitro and in vivo data suggests that miR-214 protects cells from H/R induced damage and attenuates I/R induced myocardial injury. The mechanisms involve activation of PI3K/Akt signaling by targeting PTEN expression, induction of Bad phosphorylation, and suppression of Bim1 expression, resulting in decreases in I/R-induced myocardial apoptosis.
|
419 |
Early Activation of Transcription Factor NF-κB During Ischemia in Perfused Rat HeartLi, Chuanfu, Browder, William, Kao, Race L. 01 January 1999 (has links)
The transcription factor nuclear factor κB (NF-κB) regulates multiple immediate-early gene expressions involved in immune and inflammatory responses and cellular defenses. Ischemia-reperfusion induces many immediate- early gene expressions, but little is known about the NF-κB activation in myocardium during ischemia and reperfusion. This study demonstrated that ischemia alone rapidly induced NF-κB activation in the myocardium of isolated working rat hearts. Electrophoretic mobility shift assay showed that NF-κB binding activity significantly increased in the nucleus after 5 min of ischemia and remained elevated for up to 30 min. Western blot analysis suggested that the levels of inhibitory IκBα protein in the cytoplasm became markedly decreased at 4, 5, 7.5, and 10 min of ischemia but were gradually restored following 10 min of ischemia. Reduction of IκBα protein in the cytoplasm by ischemia resulted in NF-κB translocation to the nucleus. Northern blot hybridization showed that IκBα mRNA levels were not significantly elevated during myocardial ischemia. Pyrrolidine dithiocarbamate, an antioxidant, significantly inhibited the loss of IκBα protein from the cytoplasm and prevented NF-κB binding activity in the nucleus. Reperfusion following short periods of ischemia augmented NF-κB binding activity in the nucleus induced by ischemia. The results suggest that early activation of NF-κB induced by ischemia in the myocardium could be a signal mechanism for controlling and regulating immediate-early gene expression during ischemia-reperfusion.
|
420 |
Overexpression of HSPA12B Protects Against Cerebral Ischemia/Reperfusion Injury via a PI3K/Akt-Dependent MechanismMa, Yujie, Lu, Chen, Li, Chuanfu, Li, Rongrong, Zhang, Yangyang, Ma, He, Zhang, Xiaojin, Ding, Zhengnian, Liu, Li 01 January 2013 (has links)
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60. min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24. hrs after reperfusion. Blood-brain-barrier (BBB) integrity and activated cellular signaling were examined at 3. hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.
|
Page generated in 0.3089 seconds