Spelling suggestions: "subject:"replicative aging"" "subject:"replicative nging""
1 |
Application of Shortest-Path Network Analysis to Identify Genes that Modulate Longevity in Saccharomyces cerevisiaeManagbanag, JR 03 September 2008 (has links)
Shortest-path network analysis was employed to identify novel genes that modulate longevity in the baker’s yeast Saccharomyces cerevisiae. Based upon a set of previously reported genes associated with increased life span, a shortest path network algorithm was applied to a pre-existing protein-protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single gene deletion strains corresponding to predicted components of the shortest path longevity network was determined. The 88 single-gene deletion strains identified by a network approach are significantly enriched for mutation conferring both increased and decreased replicative life span when compared to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. In addition, previously unknown longevity genes were identified, several of which function in a longevity pathway believed to mediate life span extension in response to dietary restriction. This study represents the first biologically validated application of a network construct to the study of aging and rigorously demonstrates, also for the first time, that shortest path network analysis is a potentially powerful tool for predicting genes that function as potential modulators of aging.
|
2 |
Working Together: Using protein networks of bacterial species to compare essentiality, centrality, and conservation in Escherichia coli.Wimble, Christopher 01 January 2015 (has links)
Proteins in Escherichia coli were compared in terms of essentiality, centrality, and conservation. The hypotheses of this study are: for proteins in Escherichia coli, (1) there is a positive, measureable correlation between protein conservation and essentiality, (2) there is a positive relationship between conservation and degree centrality, and (3) essentiality and centrality also have a positive correlation. The third hypothesis was supported by a moderate correlation, the first with a weak correlation, and the second hypotheis was not supported. When proteins that did not map to orthologous groups and proteins that had no interactions were removed, the relationship between essentality and conservation increased to a strong relationship. This was due to the effect of proteins that did not map to orthologus groups and suggests that protein orthology represented by clusters of orthologus groups does not accurately dipict protein conservation among the species studied.
|
Page generated in 0.098 seconds