• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 15
  • 13
  • 12
  • 11
  • 9
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the role of the mTORC1 signalling pathway in growth and productivity of industrially-relevant GS-CHO cells

Dadehbeigi, Nazanin January 2013 (has links)
Understanding the molecular mechanisms that govern productivity and growth of recombinant host cells is essential to devise informed approaches to increase commercial viability and availability of biopharmaceuticals. This work has focused on the roles of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in CHO cells, the most widely used expression system in the biopharmaceutical industry. mTORC1 is a master regulator of cell growth, protein synthesis and metabolism in response to availability of nutrients, oxygen and growth factors. Therefore, it was hypothesised that increased activity of mTORC1 enhances growth and productivity of recombinant CHO cells. The study of a recombinant GS-CHO cell line in the serum-free suspension batch culture indicated a gradual decrease in the activity of mTORC1, as defined by the decreased extent of site-specific phosphorylation of two widely ascribed downstream target proteins (ribosomal protein S6 kinase 1 (S6K1) and 4E-BP1, an inhibitor of translation initiation). The decline in the activity of mTORC1 paralleled decreased growth rate, recombinant protein specific productivity and global protein translation. To further clarify the role of the mTOR pathway in cell growth and protein production, cells in batch culture were treated with rapamycin, a specific inhibitor of mTORC1. Treatment with rapamycin stalled the growth of the CHO cell line transiently, but recombinant protein specific productivity, longevity of batch culture, and final antibody titre were greater than control. Rapamycin addition produced discriminating effects on downstream signalling targets, implicating distinct roles for these targets in control of growth and protein synthesis. Engineering the mTORC1 pathway by overexpression of specific components of this pathway (S6K1 and Rheb) generated increased growth and extended viability. Greater proliferation was not associated with improved productivity suggesting highly proliferative phenotypes that prioritise cell growth over synthesis and secretion of recombinant antibody in the recombinant GS-CHO cells examined. Therefore, the engineering of mTORC1 pathway may be beneficial to increase robustness or adaptation to stressed conditions (such as serum- free suspension growth, low nutrition availability and hypoxia).
2

Etude de la voie de signalisation et du complexe TOR (Target Of Rapamycin) chez Arabidopsis / Study of the TOR (Target Of Rapamycin) complex and signaling pathway in Arabidopsis

Dobrenel, Thomas 12 December 2012 (has links)
La protéine kinase TOR (Target Of Rapamycin) a été identifiée chez la levure et les mammifères comme participant à deux complexes protéiques qui servent de carrefour entre la perception des facteurs endogènes et exogènes et la stimulation de la croissance cellulaire. Depuis la découverte de la kinase AtTOR chez Arabidopsis thaliana, des études ont été menées afin de mieux caractériser son rôle chez les plantes et l’influence de son niveau d’expression sur la régulation du métabolisme et du développement.Au cours de ce travail, j’ai contribué à l’étude de cette kinase en étudiant l’influence de l’inactivation de TOR sur la composition du ribosome au niveau protéique et sur le niveau de phosphorylation de ces protéines, ainsi que sur l’organisation du méristème au niveau moléculaire et cytologique Au cours de cette étude, j’ai montré que certaines protéines constitutives du ribosome pourraient être des cibles de l’activité TOR au niveau de leur abondance et/ou de leur état de phosphorylation. Ainsi, l’inactivation de TOR entraine une diminution du niveau de phosphorylation des protéines RPS6 et pourrait influencer l’abondance des protéines acides constitutives du stalk ribosomal, une structure importante dans la régulation de la traduction. Les résultats obtenus suggèrent également que l’activité TOR est nécessaire au maintien du méristème à l’état fonctionnel en régulant les voies importantes contrôlant la division et la différentiation au sein de cette structure. / The TOR (Target Of Rapamycin) kinase has first been identified in yeast and mammals as being part of two different protein complexes that are implicated in the stimulation of cell growth in response to endogenous and exogenous stimuli. Since the discovery of this kinase in Arabidopsis, some studies have been led to characterize its role in plants and the influence of its expression level on the metabolism and development regulation.In this study, I worked on the influence of the TOR inactivation on the composition of the ribosome on its protein composition and on the phosphorylation status of these proteins and also on the organisation of the meristem at a molecular and cellular level.Regarding to the results I have obtained, I showed that TOR may regulate the abundance and/or the phosphorylation status of some proteins involved in the ribosome composition. Hence, TOR inactivation leads to a decrease of the phosphorylation level of RPS6 proteins and could regulate the abundance of acid proteins constitutive of the ribosomal stalk, a structure important for the translation regulation. The results obtained also suggest that TOR activity may be necessary to keep the meristem functional by the regulation of the main important pathways controlling division and differentiation in that structure.
3

Découverte de nouveaux composants de la voie de TOR de plantes par une approche de génétique / Discovery of new components of the plant TOR (Target of Rapamycin) signaling pathway in Arabidopsis thaliana using a genetic approach

Barrada, Adam 08 June 2018 (has links)
Target of rapamycin est une large kinase conservée chez la plupart des eucaryotes. Elle est au centre d’une voie de signalisation régulant la croissance, le métabolisme en fonction de l’environnement et a été largement étudiée chez l’homme du fait de son implication dans des maladies telles que le cancer. Chez les plantes, son étude est moins avancée mais le développement d’inhibiteurs ATP compétitifs chez l’homme a offert de nouvelles possibilités pour la recherche en biologie végétale. En effet, l’utilisation d’un inhibiteur de TOR nous a permis de réaliser le criblage d’une banque de mutants ethyl méthansulfonate et de découvrir une nouvelle cible de TOR : YAK1. Cette dernière régule la croissance en inhibant la prolifération. Le criblage de mutants a également permis de découvrir des mutations dans TOR affectant sa sensibilité ou son affinité pour l’inhibiteur. Ceci offre un nouvel outil pour étudier la fonction de TOR de plantes. / Target of rapamycin is a large kinase existing in most eucaryots such as plants and animals. It is at the center of a signaling pathway regulating growth and metabolism in response to environmental changes, which has been the subject of many studies in humans because of its implication in diseases like cancer. However in plants, the exploration of this pathway is less advanced but the development of ATP competitive inhibitors in humans has offered new possibilities for plant research. Indeed, the use of a TOR inhibitor has allowed us to screen an ethyl methansulfonate mutant bank and discover a new target of TOR: YAK1. The latter regulates growth by inhibiting proliferation notably through cyclin-dependant kinase inhibitors. The screen also allowed us to uncover TOR mutations which potentially affect TOR activity and/or affinity to the inhibitor. This offers a new tool for the study of TOR function in plants.
4

Characterising the role of mTORC1 in myeloid cells

Yamani, Lamya Zohair January 2017 (has links)
The mammalian target of rapamycin (mTOR) signalling pathway takes part in both extracellular and intracellular signals. It is a major regulator of cell metabolism, growth, proliferation and survival. mTOR also regulates critical processes such as cytoskeletal organization, ribosomal biogenesis, transcription and protein synthesis. The mTOR pathway has been implicated in many diseases such as cancer, neurodegeneration and diabetes, which impact homeostasis and cellular functions. Moreover, mTOR has also been shown to play a critical role in immune cell regulation of T and B cells together with neutrophils and antigen presenting cells, as it integrates signals between them extending to the entire immune microenvironment. The aim of my study was to investigate the role of a component of the mTOR complex 1, Raptor, in myeloid cells. My findings show that the absence of Raptor knock out (KO) does not affect bone marrow derived macrophage (BMDM) differentiation and maturation. However, the absence of Raptor influences BMDM polarisation towards an inflammatory phenotype, at least at the level of transcription as observed by increases in mRNA expression of inflammatory cytokines such as TNFα, IL-12β, and IL-6. This finding was consolidated by an increase in NFκΒ pathway signalling in Raptor KO BMDMs. Downstream intracellular signalling in myeloid cells was affected by deletion of Raptor as I found reduced S6K phosphorylation in Raptor KO BMDMs compared to wild type (WT) BMDMs. As a consequence of Raptor absence in BMDMs, STAT3 phosphorylation was also reduced. Raptor deletion did not impact the PI3K/Akt signalling pathway, but decreased phosphorylation of ERK. BMDMs lacking Raptor had reduced phagocytic activity as they were also observed to migrate less towards a pancreatic cancer cell line. However preliminary experiments in pancreatic cancer models did not indicate a major role for Raptor in the activity of tumour associated myeloid cells. My results demonstrate that Raptor and by implication mTORC1, is involved in macrophage polarisation and function.
5

A Simple Metabolic Switch May Activate Apomixis in <i>Arabidopsis thaliana</i>

Sherwood, David Alan 01 December 2018 (has links)
Apomixis, asexual or clonal seed production in plants, can decrease the cost of producing hybrid seed and enable currently open pollinated crops to be converted to more vigorous and higher yielding hybrids that can reproduce themselves through their own seed. Sexual reproduction may be triggered by a programmed stress signaling event that occurs in both the meiocyte, just prior to meiosis, and later in the egg just prior to embryo sac maturation. The prevention of stress signaling and the activation of a pro-growth signal prior to meiosis triggered apomeiosis, the first half of apomixis. The same approach was used prior to embryo sac maturation to trigger parthenogenesis, the second half of apomixis. This discovery suggests that apomixis exists as a program that can be activated by the appropriate metabolic signal at the appropriate developmental stages. Therefore, apomixis may be alternative mode of reproduction rather a ‘broken’ form of sexual reproduction.
6

Nutrient Signaling, Mammalian Target of Rapamycin and Ovine Conceptus Development

Gao, Haijun 2009 May 1900 (has links)
This research was conducted to test the hypothesis that select nutrients including glucose, leucine, arginine and glutamine stimulate conceptus development by activating mTOR (mammalian target of rapamycin; HGNC approved gene name: FRAP1, FK506 binding protein 12-rapamycin associated protein 1) signaling pathway. First, temporal changes in quantities of select nutrients (glucose, amino acids, glutathione, calcium, sodium and potassium) in uterine lumenal fluid from cyclic (Days 3 to 16) and pregnant (Days 10 to 16) ewes were determined. Total recoverable glucose, Arg, Gln, Leu, Asp, Glu, Asn, His, beta-Ala, Tyr, Trp, Met, Val, Phe, Ile, Lys, Cys, Pro, glutathione, calcium and sodium was greater in uterine fluid of pregnant compared to cyclic ewes between Days 10 and 16 after onset of estrus. Of note were remarkable increases in glucose, Arg, Leu and Gln in uterine flushings of pregnant ewes between Days 10 and 16 of pregnancy. Second, effects of the estrous cycle, pregnancy, progesterone (P4) and interferon tau (IFNT) on expression of both facilitative (SLC2A1, SLC2A3 and SLC2A4) and sodium-dependent (SLC5A1 and SLC5A11) glucose transporters, cationic amino acid transporters (SLC7A1, SLC7A2 and SLC7A3), neutral amino acid transporters (SLC1A4, SLC1A5, SLC3A1, SLC6A14, SLC6A19, SLC7A5, SLC7A6, SLC7A8, SLC38A3, SLC38A6 and SLC43A2) and acidic amino acid transporters (SLC1A1, SLC1A2 and SLC1A3) in ovine uterine endometria from Days 10 to 16 of the estrous cycle and Days 10 to 20 of pregnancy as well as in conceptuses from Days 13 to 18 of pregnancy were determined. Among these genes, SLC2A3 and SLC7A6 were detectable only in trophectoderm and endoderm of conceptuses. The abundance of mRNAs for SLC2A1, SLC2A4, SLC5A1, SLC5A11, SLC7A1, SLC7A2, SLC1A4, SLC1A5, SLC43A2 and SLC1A3 changed dynamically in ovine uterine endometria according to day of the estrous cycle and early pregnancy. Expression of mRNAs for SLC2A1, SLC5A11 and SLC7A1 in endometria was induced by P4 and further stimulated by IFNT with shortterm treatment (12 days), while expression of SLC7A1 and SLC1A5 in endometria required long-term treatment (20 days) with P4 and IFNT. Third, effects of the estrous cycle, pregnancy, P4 and IFNT on expression of nitric oxide synthase (NOS1, NOS2 and NOS3), GTP cyclohydrolase (GCH1), ornithine decarboxylase 1(ODC1), insulin-like growth factor II (IGF2), FRAP1 complexes (FRAP1, LST8, MAPKAP1, RAPTOR, RICTOR), regulators (TSC1, TSC2, RHEB) and an effector (EIF4EBP1) of FRAP1 signaling in ovine uterine endometria from Days 10 to 16 of the estrous cycle and Days 10 to 20 of pregnancy as well as in conceptuses from Days 13 to 18 of pregnancy were determined. All of these genes were expressed in ovine uterine endometrium and conceptuses. Among these genes, expression of NOS1, IGF2, RHEB and EIF4EBP1 changed dynamically due to day of the estrous cycle and early pregnancy. Progesterone stimulated NOS1 and GCH1 expression while IFNT inhibited NOS1 expression in uterine endometria, and P4 and IFNT stimulated expression of RHEB and EIF4EBP1 in uterine endometria. Collectively, these results indicate that: 1) the availability of select nutrients in the ovine uterine lumen increases to support the rapid growth and elongation of the conceptus during the peri-implantation stage of pregnancy; 2) P4 and/or IFNT stimulate(s) glucose and amino acid transporters to facilitate their transport from maternal tissues and/or blood into the uterine lumen during early pregnancy; 3) the FRAP1 cell signaling pathway mediates interactions between the maternal uterus and peri-implantation conceptus and both P4 and IFNT affect this pathway by regulating expression of RHEB and EIF4EBP1. Expression of NOS, ODC1 and IGF2 appear to be linked to FRAP1 signaling in both uteri and peri-implantation conceptuses.
7

THE DEVELOPMENT AND MOLECULAR EXPRESSION IN MAMMALIAN CELLS OF AN HA-TAGGED PLASMID ENCODING FOR THE TARGET OF RAPAMYCIN (mTOR)

Dougherty, Kevin S. 18 December 2007 (has links)
No description available.
8

Identification des protéines de liaison à l’ARN contrôlant la traduction des ARNm 5’TOP et caractérisation de leur régulation par la voie mTOR / Identification of RNA binding proteins controlling 5’TOP mRNAs translation and characterization of their regulation by mTOR pathway

Nouschi, Aurélien 15 September 2015 (has links)
La biogenèse des ribosomes est un processus complexe finement régulé pour s’adapter à la disponibilité en nutriments et en facteurs de croissance ainsi qu’à la présence éventuelle de stress. Une étape clé de la régulation de la biogenèse des ribosomes se fait par la régulation de la traduction des ARNm 5’ Terminal OligoPyrimidine (5’TOP) qui codent pour les protéines ribosomiques. Bien que la voie de signalisation mechanistic Target of Rapamycin (mTOR) ait été identifiée depuis des décennies comme activatrice de cette traduction des ARNm 5’TOP, les régulateurs impliqués ainsi que leur contrôle par la voie mTOR n’ont jamais été identifiés avec précision. Dans ce travail, nous avons montré que La-related protein 1 (Larp1), une protéine de liaison à l’ARN cible de mTOR, est indispensable à l’inhibition de la traduction des ARNm 5’TOP en aval de mTOR. De plus, Larp1 semble participer à l’inhibition de la formation du complexe d’initiation de la traduction eIF4F, qui est responsable du recrutement du complexe de pré-initiation 43S sur la coiffe m7G présente à l’extrémité 5’ de tous les ARNm. Nous avons également démontré que Larp1 peut se lier à la protéine Poly(A)-Binding Protein (PABP) et à la protéine de la petite sous-unité ribosomique RPS6 et que cette dernière interaction diminue lorsque les sites de phosphorylation de Larp1 dépendants de mTOR Ser 689 et 697 sont mutés en alanine. Ces résultats représentent une avancée importante dans la compréhension de la régulation de la traduction des ARNm 5’TOP par la voie mTOR. Cependant, des études complémentaires sont nécessaires afin de comprendre plus en détail le mécanisme exact par lequel Larp1 réprime la traduction des ARNm 5’TOP. / Ribosome biogenesis is a process that is finely tuned to adapt to nutrients and growth factors availability as well as to cellular stress and insults. Ribosomal proteins, the protein component of ribosomes, are encoded by 5’ Terminal Oligopyrimidine (5’TOP) mRNAs. A key step in ribosome biogenesis is the up-regulation of the translation of 5’TOP mRNAs. Although the mechanistic Target of Rapamycin (mTOR) pathway have been known for decades to promote 5’TOP mRNAs translation, the regulators involved and their control by the mTOR pathway remains obscure. In this work we demonstrated that La-related protein 1 (Larp1), an RNA-binding protein and substrate of mTOR, is necessary for the inhibition of 5’TOP mRNAs translation downstream of mTOR. In particular Larp1 seems to interfere with the formation of the translation initiation complex eIF4F, which is responsible for the recruitment of the 43S preinitiation complex to the m7G cap present at the 5’ end of mRNAs. Furthermore we found that Larp1 interacts with the protein Poly(A)-Binding Protein (PABP) and with the small ribosomal subunit protein RPS6 and that the latter interaction is decreased by mutation to alanine of the mTOR-dependent phosphorylation sites Ser 689 and 697. These findings are an important contribution to the understanding of the regulation of the translation of 5’TOP mRNAs by the mTOR pathway. Nevertheless more studies will be needed in order to dissect the mechanism by which Larp1 represses translation of 5’TOP mRNAs.
9

Functional characterisation of the TCTP gene : a role in regulation of organ growth / Caractérisation fonctionnelle du gène TCTP : rôle dans la régulation de la croissance d’organes

Wippermann, Barbara 07 June 2013 (has links)
La croissance d’un organisme multicellulaire pour atteindre une taille bien définie, nécessite une coordination de la prolifération cellulaire, de l’expansion et de la différentiation cellulaire ainsi que de la mort cellulaire. Ces processus sont sous l’influence de l’état nutritionnel de l’organisme, les conditions de son environnement et des signaux hormonaux. Translationally controlled tumor protein (TCTP) est un facteur essentiel à la croissance des plantes et des animaux. La protéine TCTP de plante contrôle la croissance mitotique, tandis que la protéine TCTP animale contrôle la croissance mitotique et post-mitotique. Une voie importante dans la régulation de la croissance en réponse aux nutriments est la voie Target of Rapamycin (TOR). Chez la Drosophile, il a été montré que dTCTP serait un régulateur positif en amont de TOR. Au cours de ma thèse, j’ai étudié le lien entre TCTP et la voie TOR, afin de savoir si, comme chez les animaux, AtTCTP agit en amont de la voie TOR pour contrôler la croissance des organes. Afin de savoir si la voie TCTP était liée à l’état nutritionnel, j’ai recherché l’impact du milieu de culture sur la létalité de la mutation tctp. J’ai ensuite caractérisé l’impact de la mutation tctp sur le transport et l’homéostasie de l’hormone auxine. J’ai enfin analysé pourquoi TCTP de plante ne contrôle pas la croissance post-mitotique par expansion cellulaire, contrairement à TCTP animale. Les données de la littérature montrent que chez les animaux TCTP est un activateur positif en amont de la voie TOR. Chez la plante Arabidopsis thaliana, mes données d’interactions génétiques sont en faveur d’un modèle dans lequel AtTCTP agit indépendamment de la voie TOR, contrairement de ce qu’il a été proposé chez les animaux. Chez les plantes, la perte de fonction de TCTP est associée à un retard du développement embryonnaire et à la mort. Cette létalité peut être complémentée par sauvetage des embryons sur du milieu riche en nutriments. J’ai montré que l’ajout de sucrose ou de glutamine dans le milieu de sauvetage des embryons tctp est nécessaire à leur développement. Ces données suggèrent qu’in vitro, AtTCTP n’est pas nécessaire à l’approvisionnement et à l’utilisation des nutriments sucrose, glucose ou glutamine. Dans leur ensemble, ces résultats réévaluent le rôle du régulateur de croissance TCTP en montrant que le gène AtTCTP régule la croissance mitotique indépendamment de la voie TOR et des voies de signalisation liées aux nutriments. L’observation des flux d’auxine en suivant la localisation de PIN1-GFP dans les embryons et les inflorescences du mutant tctp ne montre aucune altération par rapport au phénotype sauvage. De même, l’homeostasie de l’auxine, suivie à l’aide du rapporteur DR5::GFP n’est pas altérée dans les embryons tctp. Ceci suggère que le défaut de croissance du mutant tctp n’est pas lié à une altération du flux ou de l’homéostasie de l’auxine. La protéine TCTP de plante ne contrôle pas la croissance post-mitotique, contrairement à la protéine TCTP animale. J’ai réalisé un échange de domaines protéiques entre AtTCTP et Drosophila dTCTP. Le but était d’identifier les domaines protéiques de la protéine TCTP animale qui permettent la croissance post-mitotique. La plupart des protéines chimères étaient instables dans la Drosophile. Afin de comprendre pourquoi, j’ai réalisé du modelage par homologie et j’ai discuté la structure des chimères dans ma thèse.L’ensemble de mes résultats permet de mieux comprendre la fonction de TCTP chez les végétaux, en montrant que cette fonction s’exerce indépendamment de la voie TOR. / The growth of a multicellular organism and its size determination require the tight regulation of cell proliferation, cell differentiation, cell growth and apoptosis. These processes are influenced by the nutritional state of the organism, its environmental conditions and hormonal signals. Translationally controlled tumor protein (TCTP) is an essential regulator of growth in plants and animals. In plants it controls mitotic growth, whereas in animals, it controls mitotic and post-mitotic growth. One of the important pathways involved in the control of growth in response to nutrients is the Target of Rapamycin (TOR) pathway. In Drosophila, dTCTP was proposed to act a positive regulator upstream of TOR, although this role remains a matter of debate in the animal field.During the past 3 years of my PhD. thesis, I addressed the question whether plant TCTP acts upstream of TOR to control organ growth. I studied the impact of nutrient availability and hormones on TCTP role to control growth in plants and vice versa. Finally, I examined why plant TCTP does not control post-mitotic cell expansion growth, conversely to animal TCTP using a structure-function approach.In animals, TCTP was proposed to act as a positive activator upstream of the TOR pathway. In plants, my data support a model in which AtTCTP acts independently from the plant TOR pathway, thus in contrast to what has been proposed in animals. TCTP loss of function leads to delay of embryo development and death. Nutrient supplement rescues this embryos lethality. First, I demonstrate that embryos grown on nutrients lacking sucrose or glutamine fail to develop correctly. My data demonstrate that in vitro AtTCTP is not essential to the uptake, the use of and the response to the nutrients glucose, sucrose or glutamine. Taken together, these results reevaluate the role of AtTCTP as a growth regulator controlling mitotic growth independently from the TOR pathway and likely from nutrient related signaling pathways. Interestingly, my data also show that AtTCTP controls growth independently from auxin flux or homeostasis and that auxin-induced growth can occur without TCTP. To address why plant TCTP do not control post-mitotic growth conversely to animal counterpart, I performed protein domain swaps and created chimera proteins between Arabidopsis AtTCTP and Drosophila dTCTP. The rational was to identify protein domains that differentiate plant and animal TCTPs with regard to post-mitotic growth control. Most of chimera proteins were instable and I was unable to complement tctp loss of function in Drosophila. I performed a structure based modeling to understand this phenotype and the outcome is discussed in my PhD thesis.Altogether my results improve the understanding of plant morphogenesis by reevaluating the role of the central growth regulator TCTP.
10

Identification des protéines de liaison à l’ARN contrôlant la traduction des ARNm 5’TOP et caractérisation de leur régulation par la voie mTOR / Identification of RNA binding proteins controlling 5’TOP mRNAs translation and characterization of their regulation by mTOR pathway

Nouschi, Aurélien 15 September 2015 (has links)
La biogenèse des ribosomes est un processus complexe finement régulé pour s’adapter à la disponibilité en nutriments et en facteurs de croissance ainsi qu’à la présence éventuelle de stress. Une étape clé de la régulation de la biogenèse des ribosomes se fait par la régulation de la traduction des ARNm 5’ Terminal OligoPyrimidine (5’TOP) qui codent pour les protéines ribosomiques. Bien que la voie de signalisation mechanistic Target of Rapamycin (mTOR) ait été identifiée depuis des décennies comme activatrice de cette traduction des ARNm 5’TOP, les régulateurs impliqués ainsi que leur contrôle par la voie mTOR n’ont jamais été identifiés avec précision. Dans ce travail, nous avons montré que La-related protein 1 (Larp1), une protéine de liaison à l’ARN cible de mTOR, est indispensable à l’inhibition de la traduction des ARNm 5’TOP en aval de mTOR. De plus, Larp1 semble participer à l’inhibition de la formation du complexe d’initiation de la traduction eIF4F, qui est responsable du recrutement du complexe de pré-initiation 43S sur la coiffe m7G présente à l’extrémité 5’ de tous les ARNm. Nous avons également démontré que Larp1 peut se lier à la protéine Poly(A)-Binding Protein (PABP) et à la protéine de la petite sous-unité ribosomique RPS6 et que cette dernière interaction diminue lorsque les sites de phosphorylation de Larp1 dépendants de mTOR Ser 689 et 697 sont mutés en alanine. Ces résultats représentent une avancée importante dans la compréhension de la régulation de la traduction des ARNm 5’TOP par la voie mTOR. Cependant, des études complémentaires sont nécessaires afin de comprendre plus en détail le mécanisme exact par lequel Larp1 réprime la traduction des ARNm 5’TOP. / Ribosome biogenesis is a process that is finely tuned to adapt to nutrients and growth factors availability as well as to cellular stress and insults. Ribosomal proteins, the protein component of ribosomes, are encoded by 5’ Terminal Oligopyrimidine (5’TOP) mRNAs. A key step in ribosome biogenesis is the up-regulation of the translation of 5’TOP mRNAs. Although the mechanistic Target of Rapamycin (mTOR) pathway have been known for decades to promote 5’TOP mRNAs translation, the regulators involved and their control by the mTOR pathway remains obscure. In this work we demonstrated that La-related protein 1 (Larp1), an RNA-binding protein and substrate of mTOR, is necessary for the inhibition of 5’TOP mRNAs translation downstream of mTOR. In particular Larp1 seems to interfere with the formation of the translation initiation complex eIF4F, which is responsible for the recruitment of the 43S preinitiation complex to the m7G cap present at the 5’ end of mRNAs. Furthermore we found that Larp1 interacts with the protein Poly(A)-Binding Protein (PABP) and with the small ribosomal subunit protein RPS6 and that the latter interaction is decreased by mutation to alanine of the mTOR-dependent phosphorylation sites Ser 689 and 697. These findings are an important contribution to the understanding of the regulation of the translation of 5’TOP mRNAs by the mTOR pathway. Nevertheless more studies will be needed in order to dissect the mechanism by which Larp1 represses translation of 5’TOP mRNAs.

Page generated in 0.0549 seconds