• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 333
  • 280
  • 79
  • 30
  • 25
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 885
  • 212
  • 190
  • 103
  • 92
  • 80
  • 70
  • 70
  • 64
  • 57
  • 52
  • 49
  • 47
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Digital formation evaluation via x-ray micro-computed tomography

Ghous, Abid, Petroleum Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Machined fragments of 10 core plugs from oshore reservoirs have been analysed using a high resolution X-ray micro-computed tomography (micro-CT) facility. The facility includes a system capable of acquiring 3D images made up of 20003 voxels on core plugs up to 6 cm diameter with resolutions down to 2 um. The cores analysed include six cores from a gas reservoir and four cores from an oil reservoir. The cores exhibit a very broad range of pore and grain sizes, porosity, permeability and mineralogy. The petrological data, available only for gas reservoir cores, is compared with the data obtained from the tomographic images. Computational results made directly on the digitized tomographic images are presented for the permeability, formation factor, resistivity index and drainage capillary pressure across a range of . We show that data over a range of porosity can be computed from a single fragment. We compare the computations of petrophysical data on fragments to conventional laboratory measurements on the full plug. Permeability predictions from digital and conventional core analysis are consistent. It is shown that a characteristic length scale can be dened as a quality control parameter for the estimation of permeability. Results for formation factor, drainage capillary pressure and resistivity index are encouraging. The results demonstrate the potential to predict petrophysical properties from core material not suited for laboratory testing (e.g., sidewall or damaged core and drill cuttings) and the feasibility of combining digitized images with numerical calculations to predict properties and derive correlations for specic rock lithologies. The small sample size required for analysis makes it possible to produce multiple measurements on a single plug. This represents a potential multiplier on the quantity of core data allowing meaningful distributions or spreads in petrophysical properties to be estimated. We discuss the current limitations of the methodology and suggest improvements; in particular the need to calibrate the simulated data to parallel laboratory core measurements. We also describe the potential to extend the methodology to a wider range of petrophysical properties. This development could lead to a more systematic study of the assumptions, interpretations and analysis methods commonly applied within industry and lead to better correlations between petrophysical properties and log measurements.
262

The isolation, growth and survival of thermophilic bacteria from high temperature petroleum reservoirs

Grassia, Gino Sebastian, n/a January 1995 (has links)
The microbial ecology of 45 high temperature (> 50 ° C) petroleum reservoirs was investigated by isolating and characterizing bacteria that were present in their produced fluids. Initial work was aimed at selecting a suitable high temperature petroleum reservoir for the study of natural microbial populations. Experimental work then focussed on establishing the physico-chemical conditions that prevail in the selected reservoir and on developing media and enrichment conditions for the isolation of microorganisms indigenous to the reservoir. The ability of reservoir bacteria to grow and survive under the physical and chemical conditions found in the selected reservoir was used to assess the likelihood of an indigenous origin for these bacteria. The petroleum reservoir selected for study was the Alton petroleum reservoir (SW Queensland, Australia). It was established that most of the physico-chemical conditions in the Alton reservoir had remained unchanged since oil recovery began. The stability of redox conditions (90 mV) in the reservoir over its operating life was identified as an important factor in the coexistence of strict aerobic and strict anaerobic bacterial populations within the reservoir. An important change that has occurred in the Alton reservoir over its operating life because of oil recovery was an increase in water pH from 6.41 to 8.42 as a result of carbon dioxide loss (1.36 atm to 0.0134 atm) from the reservoir. Development of novel enrichment procedures that simulated Alton reservoir conditions led to the isolation of previously unreported aerobic and anaerobic populations of thermophilic bacteria. The aerobic bacteria isolated were identified as either endosporeforming heterotrophic bacteria from the genus Bacillus or nonspore-forming heterotrophic bacteria resembling members of the genus Thermoleophilum. All aerobes grew on carbon sources such as acetate and n-heptadecane that are normal constituents of the reservoir. The anaerobic bacteria isolated were characterized as sheathed fermentative bacteria from the order Thermotogales or non-sheathed fermentative bacteria. In parallel studies, the natural microbial populations in other reservoirs were investigated and I concluded that fermentative microorganisms were common inhabitants of high temperature petroleum reservoirs. The isolation of fermentative bacteria from these high temperature petroleum reservoirs established that fermentative bacteria are a fourth major microbial group, together with hydrocarbon-oxidizers, sulphate-reducers and methanogens, to be reported in petroleum reservoirs. The fermentative bacteria use organic nutrients and carbohydrates, but not contemporary crude oil as the principal nutrient source within reservoir waters. The thermophilic bacteria isolated from Alton petroleum reservoir demonstrated growth characteristics such as temperature (optima 50-70 ° C and range 37-85 ° C), pH (optima 6.0-9.0 and range 5.0-9.0 and salinity (optima 0-15 g per litre and range 0-30 g per litre), that were consistent with conditions encountered in the Alton reservoir (temperature 75 � C, pH 8.5 and TDS 2.7 g per litre). The isolated bacteria also demonstrated a number of characteristics that might enable them to survive adverse conditions that could be encountered in a petroleum reservoir environment. The characteristics that contribute to aerobic bacteria surviving in and overcoming periods of oxygen limitation include well-documented processes such as sporulation, by Bacillus spp., and microaerophily. The characteristics that contribute to fermentative bacteria surviving were: (1) a natural tolerance to reservoir physico-chemical fluctuations, (2) an ability to remain viable when metabolic activity was suppressed to very low rates by the growth-limiting conditions imposed, and (3) possible formation of viable ultramicrobacteria (UMB). Formation of UMB (bacteria smaller than 0.3 |im) by thermophilic bacteria has not been reported previously. The recovery of thermophilic UMB by filtration from the Alton reservoir water indicates that these bacteria occur in natural habitats. This study found the formation of thermophilic UMB and their survival characteristics differed considerably from that reported for the mesophilic, marine bacterium Vibrio sp. DWI. Unlike mesophilic marine bacteria, thermophilic bacteria did not always respond to nutrient deprivation by forming UMB and that these UMB did not show any increased ability to survive in the face of adverse conditions. Although the formation of UMB as part of routine cell growth and division was not demonstrated directly in this study, circumstantial evidence suggests that they form part of a natural life cycle. The exact conditions that result in UMB formation and their role in survival remain unresolved. The capacity of nonspore-forming indigenous populations from Alton to survive sudden shifts in environmental conditions that might result from common oilfield operations was poor. Such operations were demonstrated to be inhibitory or lethal to Alton reservoir bacteria. It also was concluded that such oilfield operations suppress indigenous microbiota. However, the impacts of most oilfield operations within a reservoir are likely to be confined to the immediate area surrounding injection and producing wells. Minimizing the localized effects of oilfield practices on indigenous reservoir populations will lead to the better management of undesirable microbial activity in reservoirs such as H2S formation (souring) and facilitate development of better microbially mediated oil recovery process. This study showed that selected reservoir isolates possess characteristics which are suitable for in situ biotechnological applications such as microbially enhanced oil recovery (MEOR). Characteristics favourable for enhanced oil recovery include a capability for UMB formation, which would enable better dispersion, and resistance to high concentrations of reservoir components such as calcium, magnesium, strontium, heavy metals and hydrocarbons.
263

Short term forecasting of algal blooms in drinking water reservoirs using artificial neural networks / Hugh Edward Campbell Wilson.

Wilson, Hugh Edward Campbell January 2004 (has links)
"April 2004" / Bibliography: p. 285-299. / xxviii, 299p : ill., map ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Artificial neural networks (ANNs), trained to make short term forecasts of algal blooms in lakes and rivers, are potentially useful decision making tools for the operational management of eutrophication. This thesis addresses the question of whether a standardised, gemeric ANN model representation can be developed to achieve this goal. It is argued that four requirements need to be addressed: i) compatibility of models with existing water quality monitoring regimes, ii) stability and repeatability of training outcomes, iii) realistic and meaningful estimates of model performance, and iv) explanation of predictions. / Thesis (Ph.D.)--University of Adelaide, School of Earth and Environmental Sciences, Discipline of Environmental Biology, 2004
264

Oil recovery by spontaneous imbibition and viscous displacement from mixed-wet carbonates

Tie, Hongguang. January 2006 (has links)
Thesis (Ph. D.)--University of Wyoming, 2006. / Title from PDF title page (viewed on Dec. 21, 2007). Includes bibliographical references (p. 199-216).
265

Surface and subsurface fault and fracture systems with associated natural gas production in the Lower Mississippian and Upper Devonian, Price Formation, southern West Virginia

Johnson, S. Reed. January 2007 (has links)
Thesis (M.S.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains vii, 102 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 91-94).
266

Issues in Assessing Short-Term Water Supply Capabilities of Reservoir Systems

Schnier, Spencer Thomas 2010 May 1900 (has links)
The Texas Commission on Environmental Quality (TCEQ) uses a Water Availability Modeling System (WAM) to support long-term regional and statewide water resources planning and management. The water availability studies are based on the modeling capabilities of the Water Rights Analysis Package (WRAP). This research improves the understanding of decision support tools for short-term river basin management. Current reservoir storage levels must be considered to assess short-term frequencies and reliabilities. Conditional reliability modeling (CRM) is used to assess the likelihood of meeting targets for instream flow, reservoir storage, water supply diversion and hydroelectric power generation in the near future (next month to next several years), conditioned upon preceding storage. This study uses data for the Brazos River Basin from the TCEQ WAM System to assess key complexities of water supply reliability analysis in general and conditional reliability modeling in particular. These complexities include uncertainties associated with river basin hydrology, estimating yield-reliability relationships for individual reservoirs and multiple reservoir systems, conventional long-term planning versus short-term adaptive management and other modeling and analysis issues. The modeling capabilities of WRAP were expanded to support near real-time operation of dams under various stream flow conditions. The sensitivity to changes in modeling options is assessed for short and long-term simulations. Traditional and newly developed methodologies for estimating firm yields and water supply reliabilities are evaluated. Guidelines are developed regarding the practical application of firm yield analyses and conditional reliability modeling. Important applications of this research include real-time decision support during drought and routinely recurring operational planning activities. A case study of the drought of 2009 uses the CRM features of WRAP for these applications.
267

Oncolytic Viruses as a Potential Approach to Eliminate the HIV Reservoir

Costiniuk, Cecilia T. 12 March 2013 (has links)
Similar to cancer cells, HIV-infected cells differ from HIV-uninfected cells in that they have altered interferon signaling pathways, the apparent reason for the selectivity of certain oncolytic viruses (OVs). Therefore, it was hypothesized that use of an OV, such as recombinant Maraba virus (MG1), may be a potential approach to eliminate latently-infected cells constituting the HIV reservoir while sparing HIV-uninfected cells. This was studied in U1, ACH-2, OM-10 and J1.1 cells and their respective HIV-uninfected parent cell lines in addition to CD4+CD25-HLADR- cells from HIV-infected individuals on effective antiretroviral therapy. Although MG1 infected and killed latently HIV-infected U1 cells to a greater degree than the HIV-uninfected parent U937 cells, this was not observed in the other HIV-infected cell lines and their respective parent cell lines. Furthermore, results from primary cells suggest that MG1 alone does not appear to eliminate cells which comprise the major HIV reservoir. Challenges of studying the HIV reservoir and priorities for future studies examining the use of OVs as a potential strategy to eliminate the HIV reservoir are discussed.
268

A Novel Approach for the Rapid Estimation of Drainage Volume, Pressure and Well Rates

Gupta, Neha 1986- 14 March 2013 (has links)
For effective reservoir management and production optimization, it is important to understand drained volumes, pressure depletion and reservoir well rates at all flow times. For conventional reservoirs, this behavior is based on the concepts of reservoir pressure and energy and convective flow. But, with the development of unconventional reservoirs, there is increased focus on the unsteady state transient flow behavior. For analyzing such flow behaviors, well test analysis concepts are commonly applied, based on the analytical solutions of the diffusivity equation. In this thesis, we have proposed a novel methodology for estimating the drainage volumes and utilizing it to obtain the pressure and flux at any location in the reservoir. The result is a semi-analytic calculation only, with close to the simplicity of an analytic approach, but with significantly more generality. The approach is significantly faster than a conventional finite difference solution, although with some simplifying assumptions. The proposed solution is generalized to handle heterogeneous reservoirs, complex well geometries and bounded and semi-bounded reservoirs. Therefore, this approach is particularly beneficial for unconventional reservoir development with multiple transverse fractured horizontal wells, where limited analytical solutions are available. To estimate the drainage volume, we have applied an asymptotic solution to the diffusivity equation and determined the diffusive time of flight distribution. For the pressure solution, a geometric approximation has been applied within the drainage volume to reduce the full solution of the diffusivity equation to a system of decoupled ordinary differential equations. Besides, this asymptotic expression can also be extended to obtain the well rates, producing under constant bottomhole pressure constraint. In this thesis, we have described the detailed methodology and its validation through various case studies. We have also studied the limits of validity of the approximation to better understand the general applicability. We expect that this approach will enable the inversion of field performance data for improved well and/or fracture characterization, and similarly, the optimization of well trajectories and fracture design, in an analogous manner to how rapid but approximate streamline techniques have been used for improved conventional reservoir management.
269

A process-based stable isotope approach to carbon cycling in recently flooded upland boreal forest reservoirs

Venkiteswaran, Jason January 2002 (has links)
Reservoirs impound and store large volumes of water and flood land. The water is used for electricity generation, irrigation, industrial and municipal consumption, flood control and to improve navigation. The decomposition of flooded soil and vegetation creates greenhouse gases and thus reservoirs are a source of greenhouse gases. Reservoirs are not well studied for greenhouse gas flux from the water to the atmosphere. The FLooded Upland Dynamics EXperiment (FLUDEX) involves the creation of three experimental reservoirs in the upland boreal forest to study greenhouse gas and mercury dynamics. The balance of biological processes, decomposition, primary production, CH<sub>4</sub> oxidation and the nitrogen cycle in the reservoirs controls the greenhouse gas flux from the reservoir to the atmosphere. Understanding the importance and controlling factors of these processes is vital to understanding the sources and sinks of greenhouse gases within reservoirs. The carbon and oxygen dynamics near the sediment-water interface are very important to the entire reservoir because many processes occur in this area. Light and dark benthic chambers were deployed, side-by-side, to determine the benthic flux of DIC and CH<sub>4</sub> across the sediment-water interface and to determine the role of benthic photoautotrophs in benthic DIC, CH<sub>4</sub> and O<sub>2</sub> cycling. Benthic chambers have shown photoautotrophs use the decomposing soil, rocks and exposed bedrock as a physical substrate to colonize and the CO<sub>2</sub> produced by the decomposing soil as a carbon source since the delta<sup>13</sup>C-DIC value of the DIC added to light chambers is enriched relative to dark chambers and net photosynthesis rates are linked to community respiration. Benthic photoautotrophs consume 15-33% of the potential DIC flux into the water column. CH<sub>4</sub> produced by the decomposition of soils is partially oxidized by methanotrophs that use the photosynthetically produced oxygen. The delta<sup>13</sup>C-CH<sub>4</sub> values of the CH<sub>4</sub> added to light chambers is enriched relative to dark chambers and 15-88% of the potential CH<sub>4</sub> flux into the water column is oxidized. An isotope-mass budget for DIC and CH<sub>4</sub> is presented for each reservoir to identify the importance of processes on areservoir scale. Input of DIC to the reservoirs from overland flow can be important because concentration is greater and delta<sup>13</sup>C-DIC values are depleted relative to inflow from Roddy Lake. Estimates of total reservoir primary production indicate that 3-19% of the total DIC production from decomposition is removed by photoautotrophs. The carbon cycling in biofilm and the importance of periphytic primary production needs to be better understood. Dissolved delta<sup>13</sup>C-CH<sub>4</sub> values of CH<sub>4</sub> in reservoir outflow enriched 45-60permil, indicating that CH<sub>4</sub> oxidation was an important CH<sub>4</sub> sink within the reservoirs. Stable carbon isotope data indicates that the CH<sub>4</sub> in the bubbles is partially oxidized so the site of bubble formation is the upper portion of the flooded soil. The fraction of CH<sub>4</sub> converted to CO<sub>2</sub> in the FLUDEX reservoirs is similar to that of the wetland flooded for the Experimental Lakes Area Reservoir Project (ELARP). Approximately half of the dissolved CH<sub>4</sub> in the FLUDEX reservoirs was removedby CH<sub>4</sub> oxidation. The ebullitive flux of CH<sub>4</sub> from FLUDEX reservoirs is reduced 25-75% by CH<sub>4</sub> oxidation. The CH<sub>4</sub> flux to the atmosphere from peat surface of the ELARP reservoir became less oxidized after flooding: 91% to 85% oxidized. The floating peat islands of the ELARP reservoir were less oxidized than the peat surface. Similar to the CH<sub>4</sub> in the FLUDEX reservoirs, CH<sub>4</sub> in the ELARP peat islands was oxidized 56%. CH<sub>4</sub> oxidation is an important process because it reduces the global warming potential of the greenhouse gas flux since CO<sub>2</sub> is less radiatively active than CH<sub>4</sub>.
270

Has the Redesign of Columbia Lake Improved Water Quality in Laurel Creek?

Yu, Han January 2008 (has links)
Stormwater impoundments are one of many types of best management practices (BMP) designed and implemented to regulate water quantity and improve the quality of runoff from urban areas. Studies of water quality in urban impoundments have indicated that conventional designs are however, not very effective at removing solids and associated pollutants. Accordingly, many urban impoundments are being re-designed to improve downstream water quality. However, few studies have systematically monitored and quantified post-design water quality improvements of urban impoundments. This thesis examines changes in the water quality performance of an urban impoundment (Columbia Lake) in Waterloo, Ontario resulting from redesign of the lake for the pre-design period (2003 and 2004) and the post-design period (2006 and 2007). To achieve this goal, four years of water quality data collected at the inlet and outlet of Columbia Lake as part of the Laurel Creek Monitoring Program was measured. Water chemistry parameters included total phosphorus (TP), soluble reactive phosphorus (SRP), suspended solids (SS), dissolved oxygen (DO), pH and total dissolved solids (TDS). Inlet and outlet discharge (Q) were measured to determine the water retention time in the lake. Concentrations and loads of TP and SS for the post-design period (2006 and 2007) were compared to those for the pre-design period (2003 and 2004). During the pre-design period (2003 and 2004), inflow TP concentrations ranged from 18 to 372 µg L-1 with an average (mean ± standard error) of 56±7 µg L-1, while outflow TP concentrations ranged from 37 to 266 µg L-1 with an average of 116±6 µg L-1. Post-design TP concentrations ranged from 10 to 124 µg L-1 with an average of 53±5 µg L-1 and from 14 to 147 µg L-1 with an average of 44±3 µg L-1 at the inflow and outflow, respectively. Pre-design SS concentrations ranged from 1.8 to 168.5 mg L-1 with a mean of 19.0±3.2 mg L-1 and from 4.0 to 194.7 mg L-1 with a mean of 66.6±4.7 mg L-1 at the inflow and outflow, respectively. Post-design SS concentrations varied from < 0.1 to 25.8 mg L-1 with an average of 8.5±0.8 mg L-1 and from < 0.1 to 42.5 mg L-1 with an average of 14.5±0.8 mg L-1 at the inflow and outflow, respectively. Sedimentation/resuspension dominated the TP and SS transfer via Columbia Lake. Pre-design TP loads (log-transformed) strongly correlated with SS loads at the inflow and outflow (r = 0.661 and 0.777, p = 0.0001). These parameters were more strongly correlated during the post-design period (r = 0.794 and 0.915, r = 0.0001), which indicates that particulate P (PP) was a dominant fraction of TP and that the release of dissolved phosphorus (DP) from bottom sediments was considerably decreased following the redesign. No significant difference was observed between inflow and outflow SRP concentrations. Discharge strongly affected TP and SS loads at the inflow and outflow during the pre- and post-design periods (r > 0.79, p = 0.000 for all). After the redesign of Columbia Lake, the average net internal P loading rate decreased from 198% to 22% for TP. The primary factor influencing the observed decreased post-design TP and SS outputs was the removal of sediment from the lake. Bottom sediment removal and changes to the lake bathymetry reduced sediment resuspension and P desorption, which decreased the average net internal SS loading rate from 828% to 154%. The Columbia Lake Water Quality Model developed by Stantec Consulting Ltd. (2004) underestimated the post-design outflow TP and SS concentrations mainly because it did not include terms that account for factors such as bioturbation, wave induced resuspension and biological activity.

Page generated in 0.0664 seconds