Spelling suggestions: "subject:"reset control"" "subject:"beset control""
1 |
Some Results on Reset Control systems / Sur la stabilité des systèmes à réinitialisationLoquen, Thomas 07 May 2010 (has links)
Les contrôleurs à réinitialisation sont une classe de systèmes hybrides dont la valeur de tout ou partie des états peut être instantannément modifiée sous certaines conditions algébriques. Cette interaction entre dynamique temps-continu et temps-discret de ces contrôleurs permet souvent de dépasser les limites des contrôleurs temps-continu. Dans cette thèse, nous proposons des conditions constructives (sous forme d’Inégalités Matricielles Linéaires) pour analyser la stabilité et les performances de boucle de commande incluant un contrôleur à réinitialisation. En particulier, nous prenons en compte la présence de saturation en amplitude des actionneurs du système. Ces non-linéarités sont souvent source d'une dégradation des performances voir d’instabilité. Les résultats proposés permettent d’estimer le domaine de stabilité et un niveau de performance pour ces systèmes, en s’appuyant sur des fonctions de Lyapunov quadratiques ou quadratiques par morceaux. Au delà de l'aspect analyse, nous exposons deux approches pour améliorer la région de stabilité (nouvelle loi de réinitialisation et stratégie « anti-windup »). / Hybrid controllers are flexible tools for achieving system stabilization and/or performance improvement tasks. More particularly, hybrid controllers enrich the spectrum of achievable trade-offs. Indeed, the interaction of continuous- and discrete-time dynamics in a hybrid controller leads to rich dynamical behavior and phenomena not encountered in purely continuous-time system. Reset control systems are a class of hybrid controllers whose states are reset depending on an algebraic condition. In this thesis, we propose constructive conditions (Linear Matrix Inequalities) to analyze stability and performance level of a closed-loop system including a reset element. More particularly, we consider a magnitude saturation which could be the source of undesirable effects on these performances, including instability. Proposed results estimate the stability domain and a performance level of such a system, by using Lyapunov-like approaches. Constructive algorithms are obtained by exploiting properties of quadratic - or piecewise quadratic - Lyapunov functions. Beyond analysis results, we propose design methods to obtain a stability domain as large as possible. Design methods are based on both continuous-time approaches (anti-windup compensator) and hybrid-time approaches (design of adapted reset rules).
|
2 |
Hybrid Solutions for Mechatronics. Applications to modeling and controller design.Bertollo, Riccardo 10 March 2023 (has links)
The task of modeling and controlling the evolution of dynamical sys- tems is one of the main objectives in mechatronics engineering. When approaching the problem of controlling physical or digital systems, the dynamical models have been historically divided into continuous-time, described by differential equations, and discrete-time, described by difference equations. In the last decade, a new class of models, known as hybrid dynamical systems, has gained popularity in the control community because of its high versatility. This framework combines continuous-time and discrete- time evolution, thus allowing for both the description of a broader class of systems and the achievement of better-performing controllers, compared to the traditional continuous-time alternatives. After the first rigorous introduction of the framework, several Lyapunov-based results were published in the literature, and numerous application areas were shown to benefit from the introduction of a hybrid dynamics, like systems involving impacts or physical systems connected to digital controllers (cyber-physical systems). In this thesis, we use the hybrid framework to study different mechatronics-inspired control problems. The applications we consider are diverse, so we split the presentation into three parts. In the first part we further analyze a particular hybrid control strategy, known as reset control, providing some new theoretical guarantees, together with an application to adaptive control. In the second part we consider two applications of the hybrid framework to the network dynamics field, specifically we analyze the problems of distributed state estimation and of uniform synchronization of nonlinear oscillators. In the third part, we use a hybrid approach to study two applications where this framework has been rarely employed, or not at all, namely smart agriculture and trajectory tracking for a bipedal walking robot. We study these application-inspired problems from a theoretical point of view, giving robust Lyapunov-based stability guarantees. We complement the theoretical analysis with numerical results, obtained from simulations or from experiments.
|
3 |
Nonlinear and Hybrid Feedbacks with Continuous-Time Linear Systems / Rétroactions non linéaires et hybrides avec systèmes linéaires à temps continuCocetti, Matteo 21 May 2019 (has links)
Dans cette thèse, nous étudions la rétroaction de systèmes linéaires invariants dans le temps reliés entre eux par trois blocs non linéaires spécifiques : un opérateur de lecture/arrêt, un mécanisme de réinitialisation de commutation et une zone morte adaptative. Cette configuration ressemble au problème de Lure étudié dans le cadre de stabilité absolue, mais les types de non-linéarités considérés ici ne satisfont pas (en général) une condition sectorielle. Ces blocs non linéaires donnent lieu à toute une série de phénomènes intéressants, tels que des ensembles compacts d’équilibres, des ensembles hybrides oméga-limites et des contraintes d’état. Tout au long de la thèse, nous utilisons le formalisme des systèmes hybrides pour décrire ces phénomènes et analyser ces boucles. Nous obtenons des conditions de stabilité très précises qui peuvent être formulées sous forme d’inégalités matricielles linéaires, donc vérifiables avec des solveurs numériques efficaces. Enfin, nous appliquons les résultats théoriques à deux applications automobiles. / In this thesis we study linear time-invariant systems feedback interconnected with three specific nonlinear blocks; a play/stop operator, a switching-reset mechanism, and an adaptive dead-zone. This setup resembles the Lure problem studied in the absolute stability framework, but the types of nonlinearities considered here do not satisfy (in general) a sector condition. These nonlinear blocks give rise to a whole range of interesting phenomena, such as compact sets of equilibria, hybrid omega-limit sets, and state constraints. Throughout the thesis, we use the hybrid systems formalism to describe these phenomena and to analyze these loops. We obtain sharp stability conditions that can be formulated as linear matrix inequalities, thus verifiable with numerically efficient solvers. Finally, we apply the theoretical findings to two automotive applications.
|
Page generated in 0.0525 seconds