• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 27
  • 19
  • 11
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 150
  • 150
  • 53
  • 27
  • 23
  • 23
  • 22
  • 21
  • 18
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Avaliação da inversão da sacarose em um sistema de evaporação (evaporador de filme descendente com promotor de película). / Evaluation of the sugar inversion in an evaporation system (faling film evaporator with promotor of film).

Edwin José Castillo Zurita 17 June 2008 (has links)
Neste trabalho é apresentada a avaliação da inversão da sacarose em um sistema constituído de um Evaporador de filme descendente com promotor de película. Foi feita a modelagem da inversão considerando-se os balanços de massa e de entalpia e a cinética de inversão no tubo de evaporação. Os principais parâmetros considerados foram: constante cinética (k), taxa de evaporação(mv), concentração de açúcares totais (C), vazão do líquido no tubo de evaporação (q), pH, temperatura (T) e tempo de residência no tubo de evaporação (T). Usaram-se dois métodos para a resolução do modelo, a primeira através da integração numérica do modelo (Runge Kutta de 4ta ordem) e a outra através de equacionamento simplificado a partir valores médios das propriedades, pH, e calculando as constantes cinéticas nas temperaturas efetivas em cada zona do tubo de evaporação, Tefa (zona de aquecimento) e Tefe (zona de evaporação), possibilitando assim, a integração analítica do modelo. Foram calculados os valores do volume do líquido (V) através dos dois métodos. Os resultados foram expressos em função da vazão do líquido (q). Verificou-se que os resultados calculados pelos dois métodos foram muito próximos. Os modelos desenvolvidos podem ser aplicados para a otimização do processo de evaporação visando à minimização da inversão da sacarose. O método desenvolvido possibilita a determinação do tempo de residência no tubo de evaporação. / In this work the evaluation of sucrose inversion in a system formed by falling film Evaporator with Promoter of film is presented. The modeling was made considering: mass and enthalpy balances and the kinetic of inversion in the evaporation tube. The mean parameters investigated were: kinetic constant (k), evaporation rate (mv), concentration of total sugars (C), volumetric velocity of the liquid in the evaporation tube (q), pH, temperature (T) and residence time in the evaporation tube (T). Two methods was used to solve the model, the first by numeric integration (Runge Kutta 4th Order) and the other by analytic integration of simplified model considering mean values of properties and pH, and the kinetic constant calculates at effective temperatures in each zone of the evaporation tube, Tefa and Tefe, allowed the analytic integration of the model. The volume of liquid in the evaporation tube (V) was calculated by the two methods (numeric integration and simplified methods). The results were expressed as a function of liquid flow rate (q). It was verified that the values obtained by the two methods were very closed. These models can be used for the optimization of the evaporation process emphasizing the minimization of the sucrose inversion. The methodology could be used for the determination of the residence time in the evaporation tube.
42

Distribuição do tempo de residência em processo de pasteurização com trocador de calor a placas. / Residence time distribution in a pasteurization process with plate heat exchanger.

Carola Gean Carla Cavero Gutierrez 27 March 2008 (has links)
É apresentado um estudo de distribuição do tempo de residência nas etapas de um processo de pasteurização contínuo por trocador de calor a placas (aquecimento, resfriamento, regeneração e retenção). Para o estudo experimental, foi adotada a técnica condutimétrica usando cloreto de sódio em solução aquosa como traçador. Foram verificadas as influências da vazão, da configuração do trocador de calor a placas (número de passes para o arranjo em série) e do tipo de tubo de retenção (tubo em \"S\" e tubo helicoidal). Modelos de distribuição foram usados para representar o comportamento experimental (dispersão axial, tanques em série, laminar modificado, combinado PFR+CSTR). Este estudo foi aplicado para as condições de pasteurização HTST de leite, visando a futura implementação de uma modelagem matemática rigorosa do processo, para otimização do projeto e operação do processo. / It is presented a study of residence time distribution in the steps of a process of continuous pasteurization by plate heat exchanger (heating, cooling, regeneration and holding). For the experimental study, it was adopted a conductimetric technique using sodium chloride in aqueous solution as a tracer. It was also studied the influence of the flow rate, the configuration of the plate heat exchanger (number of passes in series arrangement) and the type of holding tube (\"S\"- shaped tube and helicoidal tube). Distribution models were used for representing the experimental behavior (axial dispersion, tank in series, modified laminar, combined PFR+CSTR). This study was applied for the conditions of HTST pasteurization of milk, targeting the future implementation of a rigorous mathematical modeling of the process, which can be applied for the process operation and optimization of the project design.
43

Flow and mixing studies in a co-rotating intermeshing twin screw extruder

Singh, D. P. January 1988 (has links)
The basic understanding of mixing in the process of polymer melt extrusion by twin screw extruder is limited by their geometrical complexity and the interactions of the process parameters. Mixing and flow in a 100mm diameter, trapezoidal channeled, intermeshing co-rotating twin-screw extruder have been characterised by determination of residence time distribution (RTD) and of the paths taken by tracers added to the melt. The axial mixing and the effects of varius parameters on it were established by studying RTD using tracer techniques. As the tail of the distribution is of paramount importance, the reproducibility of the RTD curve was extensively studied. Radioactive NnO2 was used as a tracer and detected by gamma ray spectroscopy giving more reproducible results than added barytes estimated gravimetrically after ashing. Shock cooling of the extruder and sectioning of the solidified compound in the screw channels was used to-study the flow mechanism. The maximum throughput achieved, polymer melting mechanism, filled volume and axial mixing Are interrelated, and are dependent on the configuration and position of segmented mixing discs present in the screw profile. In the upstream position these act as melting discs and their efficiency is increased in a closed configuration. Initial melting is achieved over a remarkably short distance along the screw profile. The screw speed affects the axial mixing which is shown to be related to the net relative pressure change at the screw tips. A flow model is proposed such that the overall material flow taking place in an anticlockwise direction along the screw channel comprises two separate flow regimes. The upper regime rotates anti-clockwise and is made up of main and small tetrahedron flow and calender flow. The lower flow regime rotates clockwise and is made up of main and small side leakage flows and a portion of the main tetrahedron flows together with a central flow. The flow studies show conclusively that the melt from a particular site ahead of the intermeshing zone occupies a predestined site after passing through the intermeshing zone.
44

Water use, storage and transfer in tropical bamboos

Fang, Dongming 23 January 2018 (has links)
No description available.
45

Process Intensification Techniques for Continuous Spherical Crystallization in an Oscillatory Baffled Crystallizer with Online Process Monitoring

Joseph A Oliva (6588797) 15 May 2019 (has links)
<div> <p>Guided by the continuous manufacturing paradigm shift in the pharmaceutical industry, the proposed thesis focuses on the implementation of an integrated continuous crystallization platform, the oscillatory baffled crystallizer (OBC), with real time process monitoring. First, by defining an appropriate operating regime with residence time distribution (RTD) measurements, a system can be defined that allows for plug flow operation while also maintaining solid suspension in a two-phase system. The aim of modern crystallization processes, narrow crystal size distributions (CSDs), is a direct result of narrow RTDs. Using a USB microscope camera and principal component analysis (PCA) in pulse tracer experiments, a novel non-contact RTD measurement method was developed using methylene blue. After defining an operating region, this work focuses on a specific process intensification technique, namely spherical crystallization.</p> <p>Used mainly to tailor the size of a final dosage form, spherical crystallization removes the need for downstream size-control based unit operations (grinding, milling, and granulation), while maintaining drug efficacy by tailoring the size of the primary crystals in the agglomerate. The approach for generating spherical agglomerates is evaluated for both small and large molecules, as there are major distinctions in process kinetics and mechanisms. To monitor the spherical agglomeration process, a variety of Process Analytical Technology (PAT) tools were used and the data was implemented for scale-up applications.</p> <p>Lastly, a compartmental model was designed based on the experimental RTD data with the intention of predicting OBC mixing and scale-up dynamics. Together, with validation from both the DN6 and DN15 systems, a scale independent equation was developed to predict system dispersion at different mixing conditions. Although it accurately predicts the behavior of these two OBC systems, additional OBC systems of different scale, but similar geometry should be tested for validation purposes.</p> </div> <br>
46

CFD modelování toku partikulárních látek v rotační peci / CFD modelling of granular flow in rotary kiln

Slowik, Roman January 2020 (has links)
This work deals with modeling the flow of particulate matter in rotary kilns. For this purpose, a combined CFD and Discrete Element Method (DEM) model was used. Using Ansys Fluent software, several simulations were performed in order to determine the mean residence time and movement of the material in the rotary drum dryer. Results of the computational model were used to develop a regression model of the mean residence time and compared to the values as given by empirical equations. Furthermore, a simplified sensitivity analysis was performed for the selected input parameters of the model such as the stiffness constant, air mass flow rate and the particle size.
47

Radiocarbon (Δ14C) and Stable Carbon (δ13C) Isotopic Composition of Dissolved Inorganic Carbon (DIC) in Baffin Bay

Zeidan, Sara 02 March 2022 (has links)
It has been estimated that approximately half of all anthropogenic fossil fuel carbon dioxide (CO2) emissions have been absorbed by the oceans. Air-sea gas exchange of CO2 and the buffering capacity of seawater allows the oceans to store significant amounts of dissolved inorganic carbon (DIC; ~38,000 GtC). The Arctic Ocean is currently warming at double the rate of the rest of the planet, yet the effect of climate change on the Arctic marine carbon cycle remains unconstrained. Recent work suggests that Arctic marine environments are a carbon sink for the majority of the year, and plays a key role in storing anthropogenic carbon below the mixed layer. Baffin Bay is a semi-enclosed, Arctic basin that supplies cold surface water to the Labrador Sea; a critical region for North Atlantic deep-water formation. While the physical oceanography of surface Baffin Bay is well characterized, less is known about deep water formation mechanisms and its ventilation age. The few residence times for Baffin Bay Deep Water (BBDW) range widely from 20-1450 years. Improved residence time estimates are essential for understanding the role Baffin Bay plays in the Arctic carbon cycle and how this region will respond to climate change. Radiocarbon (D14C) and stable carbon (δ13C) measurements of DIC are powerful tools for parameterizing water mass sources, aging and residence times. However, very few DIC Δ14C and d13C data have been reported in the Arctic Ocean, comprising only a handful of stations in the Eurasian Basin, Canadian Basin, and Beaufort Sea. With this goal in mind, we conducted a study in which DIC samples were collected aboard the CCGS Amundsen in 2019 for δ13C and Δ14C analysis. DIC δ13C and D14C values ranged from 0.68‰ to +1.90‰ and -90.0‰ to +29.8‰, respectively. Surface DIC δ13C values were +0.69‰ to +1.90‰, while deep (>100m) d13C values ranged -0.01 to -0.68‰. Significant linear correlations were found for δ13C and potential density, suggesting DIC δ13C is an effective water mass and carbon source tracer in Baffin Bay. Surface DIC Δ14C values ranged -5.4‰ to +22.9‰, while deep DIC (>1400m) DIC Δ14C averaged -82.2 8.5‰ (n = 9). Much larger surface to deep gradients in DIC Δ14C are observed in Baffin Bay vs. that of the North Atlantic Ocean, suggesting significant aging of BBDW. Next, we used the potential alkalinity method (Palk) and the ΔC* method to quantify the amount of “bomb” 14C and anthropogenic C (DICanth) to model “natural” DIC Δ14C profiles. Both Palk and ΔC* proxies had high errors in cold, low salinity surface water. In particular, surface (<400m) Δ14Cbomb was overestimated at all stations. However, both proxies did not indicate Δ14Cbomb or DICanth contributions below 1000m. Two 14C residence times were estimated based on two proposed mechanisms of BBDW formation. A residence time of 690 +/- 35 years was estimated assuming surface brine rejection in Nares Strait is the main source of BBDW. Another plausible source of BBDW is the entrainment of dense north Atlantic Water over Davis Strait mixed with brine enriched surface water. A comparison of DICanth and Δ14Cbomb corrected deep DIC Δ14C values from the North Atlantic (GO SHIP A16N) to BBDW, resulted in a residence time of 360 +/- 35 years. These residence times (360-690 years) provide new constraints on the ventilation age of deep Baffin Bay and suggest this basin has the potential to store carbon for centuries.
48

Contribution à l'étude expérimentale d'un outil de mélange de type co-malaxeur : application aux polymères / Contribution to the experimental study of a co-kneader extruder : application to polymers

Monchatre, Benjamin 25 November 2015 (has links)
L’objectif de ce travail de thèse est la compréhension du mode de fonctionnement des co-malaxeurs, outils de mélange dont la connaissance est lacunaire par rapport à d’autres types de mélangeur comme l’extrudeuse mono-vis ou bi-vis. Ce manuscrit porte sur plusieurs études expérimentales relatives au co-malaxeur. L'influence de la vitesse de vis et du débit a été explorée par des mesures de distribution des temps de séjours (DTS), de température matière, de pression, de taux de remplissage, ainsi que de dispersion de fibres de verre. L'influence de la viscosité du polymère à l'état fondu sur la distribution des temps de séjour, la pression filière et la température à l'intérieur du co-malaxeur, a également été traitée, par variation de la température de régulation ou de la masse molaire du polymère. La distribution des temps de séjour ne dépend pas de la viscosité, malgré des différences de pression filière et de température matière. L'influence du profil local sur la DTS a été étudiée par des expériences interchangeant localement les types d'éléments (transport et mélange). Une méthode de mesure de la pression par extrusion micro-capillaire aux emplacements de doigts le long du fourreau a été développée, les gradients de pression sont similaires à ceux obtenus en extrudeuses bi-vis. Enfin une série d'expériences a porté sur la gélification du PVC, déterminée de façon qualitative et quantitative, et a montré l'influence primordiale de la température matière sur l’état de gélification / The aim of this PhD work is to gain a better understanding of the co-kneading process, whose knowledge is still lacking compared to other types of mixer such as the single screw extruder or the twin-screw extruder. This manuscript features several experimental studies about the co-kneader. The influence of screw speed and throughput was explored by measurements of the residence time distribution, material temperature, die pressure, filling rate, as well as dispersion of glass fibers. The influence of the viscosity of the polymer melt on the residence time distribution, die pressure and temperature within the co-kneader, was also investigated by varying the barrel temperature or the molecular weight of the polymer. The RTD is similar regardless of the viscosity, despite differences in pressure and material temperature. The influence of the screw profile on the RTD was obtained by experiments interchanging locally the types of elements (conveying and mixing). A method of measurement of the pressure along the barrel by micro-capillary extrusion through the location of pins in the barrel was developped, pressure gradients are similar to those obtained in twin-screw extruders. Finally, a series of experiments was dedicated to the gelation of PVC evaluated both qualitatively and quantitatively, and showed that the temperature governs the gelation rate
49

Foaming Properties of Dilute Pea Protein Solutions

Bao, Jiani 28 June 2022 (has links)
Plant-derived protein such as pea protein is a promising replacement for animal protein and is becoming popular in recent years because of its high nutritional value and potential reduction of environmental footprint. However, the increasing demand for plant-derived proteins is accompanied by the increase of wastes during protein processing such as wastewater containing dilute protein content, which may raise the cost for the downstream processing. Therefore, there is an emerging need to develop novel processing strategies to reduce waste while valorizing useful ingredients. Several researchers suggest that foam fractionation technology can be a viable approach to extract and concentrate protein from dilute wastewater effluent. This technology has already been applied to the chemical and food industry for the extraction of surfactant and animal proteins from wastewater. To design and apply foam fractionation to the plant-derived protein industry, fundamental knowledge on foaming properties of dilute plant-derived protein solution is needed and is currently lacking. Therefore, the objective of this thesis is to advance a fundamental understanding of the foaming properties of dilute pea protein solutions (protein concentration ≤ 1wt%). To achieve the objective, a multiscale approach is used, which is comprised of a detailed investigation of both bulk and interfacial properties of pea protein solutions and foaming properties such as foaming capacity and stability with the help of bubble structure and foam volume kinetics. The focus of this thesis is on the effect of protein concentration. Results demonstrate that protein adsorption kinetics can be characterized by four distinctive regimes: lag phase, diffusion-limited regime, transitional regime, and conformation change regime, which are highly dependent on the protein concentration. However, apparent viscosity is less affected by the protein concentration. Results also show that depending on the protein concentration, two regimes can be distinguished for foam capacity and foam stability. For the first time, these regimes can be rationalized by contrasting characteristics times of protein adsorption kinetics and processing time scale – residence time of bubbles during the foam formation. New findings from this fundamental research will shed light on the control and optimization of foaming properties of plant-derived protein solutions for applications ranging from food processing design to food product development.
50

Increasing Algal Productivity and Treatment Potential in Raceways Fed Clarified Municipal Wastewater

Pittner, Christopher D. 01 December 2018 (has links) (PDF)
Two sets of triplicate pilot algal raceway ponds (1000-L, 0.30-m deep, paddle wheel mixed) were operated for 14 months at a California wastewater treatment plant to treat wastewater and generate algal-bacterial biomass as biofuel feedstock. Two experiments were run to determine the effect on biomass productivity of (1) hydraulic residence time (HRT: 2, 3, 4, or 4.5 days) and (2) feeding schedule (18 small pulses during 8 AM-4 PM [diurnal] versus 20 large pulses during 4 AM-12 AM [diel]). The target productivity was at least 20 g volatile suspended solids per m2 of pond per day. Additional output variables were followed during the experiments: treatment performance and the effectiveness of biomass harvesting though bioflocculation. Productivity was consistently higher in ponds with a 2-d HRT versus longer HRTs. Average productivity for the 2-d HRT ponds and the variable-HRT ponds (3.6-d average HRT) were 30.1 and 23.4 g/m2-d, respectively. Productivity data collected during the feed regime experiment were highly variable, and average productivities were the same at 26 g/m2-d. During both experiments, both pond sets exceeded the target of 20 g/m2-d on an annual basis. During the hydraulic residence time experiment, the average pond productivity throughout the HRT experiment for the 2-d HRT and 3-d HRT ponds were 30.1 and 23.4 g/m2-d, respectively. Settling efficiency was high for both 2- and 3-d HRT ponds with average turbidity removal of 87-89%. However, total ammonia nitrogen (TAN) concentrations in the 2-day HRT pond effluent were 50-94% higher than in the 3-d HRT pond effluents, although effluent TAN concentrations in both ponds were approximately the same during mid-summer. Furthermore, effluent biochemical oxygen demand (BOD5) concentrations were similar, with the supernatant of Imhoff cones settled for 24 hours containing 24-27 mg/L BOD5 (81-92% removal). In general, the 3-d HRT ponds provided better treatment than the 2-d HRT ponds. During the feeding regime experiment, no productivity or BOD5 removal differences were evident. However, the 3-d HRT ponds had consistently 8 mg/L more effluent TAN than the 2-d HRT ponds.

Page generated in 0.11 seconds