• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 137
  • 89
  • 20
  • 17
  • 15
  • 11
  • 11
  • 6
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 399
  • 399
  • 62
  • 62
  • 60
  • 60
  • 57
  • 56
  • 54
  • 53
  • 53
  • 52
  • 51
  • 50
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Impact Welding and Impulse Shape Calibration of Nickel and Titanium Alloys

Nirudhoddi, Bhuvi Swarna Lalitha January 2019 (has links)
No description available.
272

Surface modification of additively manufactured metallic components

Mekhiel, Sameh January 2021 (has links)
Additive Manufacturing (AM) has revolutionized manufacturing processes by enabling the realization of custom products with intricate geometric features that were either too complex or even intractable for subtractive manufacturing processes. Yet, functional surfaces generated in AM have to be often finish machined because of their relatively inferior roughness. The first phase of this research worked around this limitation by tailoring the topography of an AM surface in-process to entail textures that further enhance certain functionalities in a process called Additive Texturing (AT). In this context, the Selective Laser Melting (SLM) process ability to realize intricate surface microfeatures was explored experimentally, evaluating its geometrical limitations. Utilizing such limitations, various patterns comprising pillars, channels, and re-entrant structures were printed to control the wetting behaviour of SLM stainless steel. AT's efficacy is demonstrated in its capability to generate hydrophobic AM surfaces with water contact angles exceeding 140°. Similarly, other texturing patterns comprising dimples, linear, V-shaped, and X-shaped grooves were investigated to tailor the tribological response of textured surfaces under dry sliding conditions. Evidently, a specific wear rate and coefficient of friction reduction of 80% and 60%, respectively, demonstrated another potential for AT. The undesirable tensile Residual Stresses (RS) that inevitably accumulate during the SLM process's rapid heating and cooling cycles were investigated in the second phase of this research. Laser Peening (LP) was utilized to post-process the printed samples to eliminate the initial tensile RS and induce near 500 Mpa compressive RS. Moreover, the LP parameters were explored and optimized to enhance RS, surface roughness, hardness, and wear resistance. / Thesis / Doctor of Philosophy (PhD)
273

REJUVENATION OF PRE-CORRODED AND/OR PRE-FATIGUED 7075-T651 ALUMINUMALLOY BY ULTRASONIC NANOCRYSTALLINE SURFACE MODIFICATION

Zhang, Ruixia January 2020 (has links)
No description available.
274

Mechanisms Of Lifetime Improvement In Thermal Barrier Coatings With Hf And/or Y Modification Of Cmsx-4 Superalloy Substrates

Liu, Jing 01 January 2007 (has links)
In modern turbine engines for propulsion and energy generation, thermal barrier coating (TBCs) protect hot-section blades and vanes, and play a critical role in enhancing reliability, durability and operation efficiency. In this study, thermal cyclic lifetime and microstructural degradation of electron beam physical vapor deposited (EB-PVD) Yttria Stabilized Zirconia (YSZ) with (Ni,Pt)Al bond coat and Hf- and/or Y- modified CMSX-4 superalloy substrates were examined. Thermal cyclic lifetime of TBCs was measured using a furnace thermal cycle test that consisted of 10-minute heat-up, 50-minute dwell at 1135C, and 10-minute forced-air-quench. TBC lifetime was observed to improve from 600 cycles to over 3200 cycles with appropriated Hf- and/or Y alloying of CMSX-4 superalloys. This significant improvement in TBC lifetime is the highest reported lifetime in literature with similar testing parameters. Beneficial role of reactive element (RE) on the durability of TBCS were systematically investigated in this study. Photostimulated luminescence spectroscopy (PL) was employed to non-destructively measure the residual stress within the TGO scale as a function of thermal cycling. Extensive microstructural analysis with emphasis on the YSZ/TGO interface, TGO scale, TGO/bond coat interface was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning electron microscopy (STEM) as a funcion of thermal cycling including after the spallation failure. Focused ion beam in-situ lift-out (FIB-INLO) technique was employed to prepare site-specific TEM specimens. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) were also employed for phase identification and interfacial chemical analysis. While undulation of TGO/bond coat interface (e.g., rumpling and ratcheting) was observed to be the main mechanism of degradation for the TBCs on baseline CMSX-4, the same interface remained relatively flat (e.g., suppressed rumpling and ratcheting) for durable TBCs on Hf- and/or Y-modified CMSX-4. The fracture paths changed from the YSZ/TGO interface to the TGO/bond coat interface when rumpling was suppressed. The geometrical incompatibility between the undulated TGO and EB-PVD YSZ lead to the failure at the YSZ/TGO interface for TBCs with baseline CMSX-4. The magnitude of copressive residual stress within the TGO scale measured by PL gradually decreased as a function of thermal cycling for TBCs with baseline CMSX-4 superalloy substrates. This gradual decrease corrsponds well to the undulation of the TGO scale that may lead to relaxation of the compressive residual stress within the TGO scale. For TBCs with Hf- and/or Y-modified CMSX-4 superalloy substrates, the magnitude of compressive residual stress within the TGO scale remained relatively constant throughout the thermal cycling, although PL corresponding to the stress-relief caused by localized cracks at the TGO/bond coat interface and within the TGO scale was observed frequently starting 50% of lifetime. A slightly smaller parabolic growth constant and grain size of the TGO scale was observed for TBCs with Hf- and/or Y- modified CMSX-4. Small monoclinic HfO2 precipitates were observed to decorate grain boundaries and the triple pointes within the alpha-Al2O3 scale for TBCs with Hf- and/or Y-modified CMSX-4 substrates. Segregation of Hf/Hf4+ at the TGO/bond coat interfaces was also observed for TBCs with Hf- and/or Y-modified CMSX-4 superalloys substrates. Adherent and pore-free YSZ/TGO interface was observed for TBCs with Hf- and/or Y-modified CMSX-4, while a significant amount of decohesion at the YSZ/TGO interface was observed for TBCs with baseline CMSX-4. The beta-NiAl(B2) phase in the (Ni,Pt)Al bond coat was observed to partially transform into gama prime-Ni3Al (L12) phase due to depletion of Al in the bond coat during oxidation. More importantly, the remaining beta-NiAl phase transformed into L10 martensitic phase upon cooling even though there was no significant difference in these phase transformations for all TBCs. Results from these microstructural observations are documented to elucidate mechanisms that suppress the rumpling of the TGO/bond coat interface, which is responsible for superior performance of EB-PVD TBCs with (Ni,Pt)Al bond coat and Hf- and/or Y-modified CMXS-4 superalloy.
275

Stress and fatigue analysis of SVI-tested camshaft lobes

Escobar, Jose Alejandro 08 November 1996 (has links)
Nondestructive evaluation techniques were employed to fully characterize three 2.3L camshafts tested in an engine simulator for an equivalent of 100,000 miles. Optical microscopy, acoustic microscopy (SAM), and profilometry were used to characterize wear and fatigue, crack depth, and surface roughness, respectively. Results show cracking to occur mainly in the opening ramp of the most abusively ground cam lobes. No clear evidence was found for subsurface cracking at depths as great as 200 μm from the lobe's surface. Profilometry results show no evidence of any major tribological effect due to the sliding friction of the follower. Fractography studies show a difference between fracture surfaces among the cracks examined; straight cracks exhibit features resembling fatigue propagation, while fracture surfaces from pitted cracks show a more brittle behavior. Small grinding cracks (approximately 300 μm in length) were found in the opening ramps of the most abusively ground lobes prior to testing. Knoop and Nanoindenter microhardness indicate a near-surface rehardening for the most abusively ground lobe (confirmed by metallography), and temper burn for the remaining lobes. X-ray residual stress results made in the opening ramp of the tested lobes show evidence of residual stress relaxation. X-ray line width data as a function of depth does not correlate with residual stress. / Master of Science
276

Processing Mechanics of Additive Friction Stir Deposition

Hartley II, William Douglas 03 July 2023 (has links)
Additive friction stir deposition (AFSD) is a newly developed solid-state metal additive manufacturing (AM) technology that adds a material feeding mechanism to the friction stir principle (Yu et al.., 2018). As a newly developed process, the development of a sound understanding of the process mechanics is necessary and may shed light on both limiting factors and new opportunities. This work explores the fundamental modes of deformation through an analytical decomposition of three flow components: 1) radial spreading, 2) rotating, and 3) traversing shear flow. The analytical models provide 'back-of-the-envelope' estimates of mechanical requirements (machine torque, for example), and straightforward algebraic equations for estimating the peak strain rate associated with deformation and the expected residence time of material underneath the AFSD tool head. A more complex, but preliminary, numerical modeling approach is then presented to models the steady state material flow as a fully coupled non-Newtonian fluid with rate and temperature dependent properties. Additionally, a transient thermal model is presented which captures the thermal history of the material along a dynamic printing trajectory. The numerical models provide insight into the pressure distribution underneath the AFSD tool, which impacts deformation bonding conditions at the interface, and suggest that temperature differences under the tool may be as high as 70℃. Several interface fracture experiments reveal a well-bonded center region, with high ductility and energy dissipation, and a poorly bonded outer edge region. Novel characterization work has been presented showing evidence of a nearly uniform 50μm thick shear layer on the top surface of a deposit. Analysis of the Prandtl number suggests that this shear layer is a consequence of a thin thermal boundary layer, which in the presence of frictional shear stress, becomes a thermo-mechanical boundary layer with a distinct flow regime from the bulk. Further characterization shows viscous mixing patterns in the wake of tool pins, and incomplete bonding at the edges of the deposition track. An additional application is presented for AFSD – selective area cladding of thin sheet metal. Substrates as thin as 1.4mm were clad without localized deformation, which is dependent on the clamping configuration of the substrate. Cladding quality, interface integrity, and certain failure modes are identified for thin cladding operations. In-situ monitoring and ex-situ laser scanning shows the slow evolution of thermal distortion during cooling of the cladding-on-sheet system. Finally, residual stress and strain estimates are made using curvature methods for bi-layer specimens extracted from the cladding. / Doctor of Philosophy / Additive manufacturing of metal components (colloquially called "3D printing") has generated significant interest and excitement as the manufacturing method of the future, where new materials with complex shapes and functionalities may unlock new possibilities for commerce and industry. Metal 3D printing also gives us new methods to repair aging and damaged structures, providing opportunities to extend the life of existing infrastructure. This work is centrally focused on understanding the most important factors and physical principles at play during a particular metal additive manufacturing process, additive friction stir deposition (ASFD). AFSD uses deformation to heat and bond materials together, building on the principles of friction welding and forge welding. A fundamental understanding of the process mechanics will allow for a better understanding of the current limits and potential opportunities this new technology can provide. Using a combination of analytical analysis, numerical modeling, and experiments, this work aims to provide a deeper understanding of the material flow, thermal fields, and mechanical forces associated with depositing material by AFSD, which may be insightful for new materials, tunable material properties, and may lead to new machine design opportunities.
277

Laser Powder Bed Fusion of Nickel-based Superalloys

Balbaa, Mohamed January 2022 (has links)
This thesis aims to investigate the manufacturability of nickel-based superalloys, IN625 and IN718, using the laser powder bed fusion (LPBF) process. The study provides a better understanding of the process-structure-property of nickel-based superalloys, their fatigue life, and subsequent post-processing. First, the process-structure-property was investigated by selecting a wide range of process parameters to print coupons for IN625 and IN718. Next, a subset of process parameters was defined that would produce high relative density (>99%), low surface roughness (~2 μm), and a low tensile RS. Second, a multi-scale finite element model was constructed to predict the temperature gradients, cooling rates, and their effect on RS. At constant energy density, RS is affected by scan speed, laser power, and hatch spacing, respectively. Third, the optimum set of parameters was used to manufacture and test as-built and shot-peened samples to investigate the fatigue life without costly heat treatment processes. It was found that shot peening resulted in a fatigue life comparable to wrought heat-treated unnotched specimen. Additionally, IN625 had a better fatigue life compared to IN718 due to higher dislocations density as well as the absence of γ´ and γ´´ in IN718 due to the rapid cooling in LPBF. Finally, the effect of post-processing on dimensional accuracy and surface integrity was investigated. A new approach using low-frequency vibration-assisted drilling (VAD) proved feasible by enhancing the as-built hole accuracy while inducing compressive in-depth RS compared to laser peening, which only affects the RS. These favorable findings contributed to the scientific knowledge of LPBF of nickel-based superalloys by determining the process parameters optimum window and reducing the post-processes to obtain a high fatigue life, a better dimensional accuracy, and improved surface integrity. / Thesis / Doctor of Philosophy (PhD)
278

An Integrated Experimental and Simulation Study on Ultrasonic Nano-Crystal Surface Modification

Miller, Max 21 October 2013 (has links)
No description available.
279

The Effects of Ultrasonic Nano-crystal Surface Modification on Residual Stress, Microstructure and Fatigue Behavior of Low-Modulus Ti-35Nb-7Zr-5Ta-0.3O Alloy

Jagtap, Rohit January 2016 (has links)
No description available.
280

Response of Wide Flange Steel Columns Subjected to Constant Axial Load and Lateral Blast Load

Shope, Ronald L. 29 November 2006 (has links)
The response of wide flange steel columns subjected to constant axial loads and lateral blast loads was examined. The finite element program ABAQUS was used to model W8x40 sections with different slendernesses and boundary conditions. For the response calculations, a constant axial force was first applied to the column and the equilibrium state was determined. Next, a short duration, lateral blast load was applied and the response time history was calculated. Changes in displacement time histories and plastic hinge formations resulting from varying the axial load were examined. The cases studied include single-span and two-span columns. In addition to ideal boundary conditions, columns with linear elastic, rotational supports were also studied. Non-uniform blast loads were considered. Major axis, minor axis, and biaxial bending were investigated. The effects of strain rate and residual stresses were examined. The results for each column configuration are presented as a set of curves showing the critical blast impulse versus axial load. The critical blast impulse is defined as the impulse that either causes the column to collapse or to exceed the limiting deflection criterion. A major goal of this effort was to develop simplified design and analysis methods. To accomplish this, two single-degree-of-freedom approaches that include the effects of the axial load were derived. The first uses a bilinear resistance function that is similar to the one used for beam analysis. This approach provides a rough estimate of the critical impulse and is suitable only for preliminary design or quick vulnerability calculations. The second approach uses a nonlinear resistance function that accounts for the gradual yielding that occurs during the dynamic response. This approach can be easily implemented in a simple computer program or spreadsheet and provides close agreement with the results from the finite element method. / Ph. D.

Page generated in 0.2085 seconds