• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE ACCURACY OF PREDICTING ONE-REPETITION MAXIMUM FROM SUBMAXIMAL VELOCITY IN THE BACK SQUAT AND BENCH PRESS

Unknown Date (has links)
This study examined the accuracy of predicting back squat and bench press one repetition maximum (1RM) from submaximal average concentric velocity (ACV).Seventeen resistance trained men performed a warm-up and 1RM test on the squat and bench press, in which ACV was assessed on all repetitions. The ACVs during the warmup closest to 1.0 and 0.5 m.s-1 were used in a 2-point linear regression forecast of 1RM and the ACVs established at the loads closest to 20, 50, 70, and 80% of 1RM were used in a 4-point 1RM prediction. An ANOVA indicated significant differences between predicted and actual 1RM for all predictions (p<0.001). Both Bland-Altman and Mountain plots confirmed the findings of the ANOVA as data were not tightly conformed to the respective zero difference lines. Therefore, these results suggest that a linear regression forecast using submaximal ACV does not accurately predict 1RM in the ¬back squat and bench press. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
2

RELATIONSHIP BETWEEN VELOCITY AND REPETITIONS IN RESERVE IN THE BACK SQUAT, BENCH PRESS, AND DEADLIFT

Unknown Date (has links)
This study examined the relationship between average concentric velocity (ACV) and repetitions in reserve (RIR) in the back squat, bench press, and deadlift. Fourteen resistance-trained men performed three experimental sessions (one for each exercise), which was comprised of 4 sets to failure at 80% of one-repetition maximum. The ACV was recorded on every repetition of every set and cross-referenced with RIR. The main findings of this study were that RIR was a significant predictor of ACV for all three exercises; the mean set ACV was significantly different between exercises (p<0.001); and the relationship between RIR and ACV was set-dependent (p<0.001). However, the within-exercise difference in ACV from set-to-set is unlikely to be practically significant as all of these ACV differences were below the threshold of 0.06 m.s-1, which is the smallest worthwhile change in ACV. Therefore, these results suggest that the RIR/ACV relationship is exercise-specific, and is stable from set-to-set. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
3

The Effects of Eccentric Phase Duration on Concentric Outcomes in the Squat and Bench Press

Unknown Date (has links)
The purpose of this research was to investigate the effects of eccentric phase duration on concentric outcomes at 60% and 80% of one-repetition maximum (1RM) in the squat and bench press. Sixteen resistance-trained males completed four laboratory visits as follows: Day 1- 1RM testing; Day 2- establishment of normative eccentric durations; Days 3 and 4- randomized fast (0.75 times) or slow (2 times) eccentric duration variations, which were controlled by visual and auditory metronomes. Eccentric duration was significantly and inversely correlated with average concentric velocity (ACV) at 60% (r = 0.408) and 80% (r = -0.477) of 1RM squat and at 100% of 1RM bench press. At 60% of 1RM squat, both fast and slow eccentric conditions produced greater (p<0.001) peak concentric velocity (PCV) than normative duration with fast also producing greater PCV than slow (p=0.044). Therefore, fast eccentric durations may benefit concentric velocity. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
4

The Effects of 3 vs. 5 Days of Training Cessation on Maximal Strength

Travis, S K., Mujika, Iñigo, Zwetsloot, Kevin A., Gentles, Jeremy A., Stone, Michael H., Bazyler, Caleb D. 01 March 2022 (has links)
Travis, SK, Mujika, I, Zwetsloot, KA, Gentles, JA, Stone, MH, and Bazyler, CD. The effects of 3 vs. 5 days of training cessation on maximal strength. J Strength Cond Res 36(3): 633-640, 2022-The purpose of this study was to compare the effects of 3 vs. 5 days of training cessation on body composition, perceived recovery and stress state, and maximal strength. Nineteen strength-trained athletes (23.8 ± 4.1 year; 90.8 ± 20.7 kg; 174.2 ± 7.3 cm) completed a powerlifting specific 4-week training block followed by either 3 or 5 days of training cessation. During the 4-week training block, athletes were trained 3 days per week, performing 3-4 movements that included at least 2-3 competition lifts per session while performing 4-5 sets of 3-5 repetitions with intensity ranging from 75 to 100% 1 repetition maximum (1RM). Body composition, psychometric measures, upper-body maximal strength, and lower-body maximal strength were assessed before (T1) and after 4 weeks of training (T2) and at 3 or 5 days of training cessation (T3). The alpha level was set at p < 0.05. After the 4-week training block (T1 to T2), trivial significant increases in body mass (p = 0.016, Hedge's g = 0.04) and bench press 1RM (p = 0.01, g = 0.16) were observed, as well as small significant increases in back squat 1RM (p < 0.001, g = 0.23), deadlift 1RM (p = 0.003, g = 0.20), powerlifting total (p < 0.001, g = 0.21), and Wilks Score (p < 0.001, g = 0.27). There were no significant differences between groups for isometric back squat performance, psychometric measures, and body composition after training cessation (T2-T3). However, small significant decreases in isometric bench press performance were observed after 5 days (p < 0.001, g = 0.16), but not 3 days of training cessation. The results of this study suggest maximal lower-body strength can be preserved during 3 and 5 days of training cessation, but maximal upper-body strength is only preserved for 3 days after 4 weeks of strength training in athletes.

Page generated in 0.1104 seconds