• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 34
  • 32
  • 12
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 280
  • 54
  • 51
  • 48
  • 47
  • 25
  • 22
  • 21
  • 21
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Resistive Switching in Porous Low-k Dielectrics

Ali, Rizwan 05 June 2018 (has links)
Integrating nanometer-sized pores into low-k ILD films is one of the approaches to lower the RC signal delay and thus help sustain the continued scaling of microelectronic devices. While increasing porosity of porous dielectrics lowers the dielectric constant (k), it also creates many reliability and implementation issues. One of the problems is the little understood metal ion diffusion and drift in porous media. Here, we present a rigorous simulation method of Cu diffusion based on Master equation with elementary jump probabilities within the contiguous dielectric film, along the pore boundary, from the dielectric matrix to the pore boundary, and from the pore boundary to the matrix material. In view of the diffusional jump distance being as large as 2 nm, the nano-pores being on a similar length scale, and the film thickness being only a few tens of nanometers, the conventional diffusion equation in differential equation form is grossly inadequate and elementary jump frequencies are required for a proper description of the Cu diffusion in porous dielectric. The present atomistic approach allows a consistent implementation of Cu ion drift in electric field by lowering and raising of the diffusion barriers along the field direction. This will help understand the behavior of Cu interconnects under thermal or electric stress at an atomistic level. Another approach to lower the increasing RC delays is to bring memory and logic closer by integrating memory in the BEOL. Resistive RAM is one such memory is not transistor based and thus, does not require a silicon substrate. Thus, it offers the possibility of integration directly into the back-end reducing memory to logic distance from 1000s of µm to a 10s of nm. This 3D integration also allows for increased density as well. However, one barrier in the implementation of RRAM in the back end is the use of expensive as well as non-BEOL native material in conventional Cu/TaOx/Pt resistive devices. In this thesis, we present our research about functionality of RRAM with porous low-k dielectrics (which are a candidate for CMOS ILD), and through the similar elementary jump simulations, discuss the impact of porosity in dielectrics on the functionality of RRAM. Lastly, we present a cheaper replacement for Pt as the counter electrode in RRAM and show that it functions as good as Pt. This work addresses following three areas: 1. Modeling of diffusion in porous dielectrics through elementary jump based simulation. The model is based on random walk theory of elementary particle jumps. Initially, qualitative simulations are conducted without actual parameters. It is shown that Cu diffusion in porous dielectrics decreases quasi-linearly with porosity. Furthermore, it is shown that morphology of the pores may have a greater effect on diffusivity compared to porosity. The simulations are then calibrated with parameters, and the result is shown to yield a similar diffusivity times as actual process time. 2. Modeling of Cu ions drift in porous dielectrics under electric stress. First, the model is explained, and then qualitative simulation results are presented for porous dielectrics with varied porosities and morphologies. 3. Research to find a suitable replacement for Pt as the counter electrode in RRAM devices. The research methodology is discussed and a much cheaper Rh is selected as the potential replacement for Pt. Successful functionality of Rh based resistive devices is presented. / Master of Science / As electronic devices are being scaled for integrating more functions and higher computation, the internal delays are increasing, which may become a bottleneck in performance. To resolve this issue of internal delay, new materials are being proposed to replace the conventional materials to make the chip. One promising material like that are the porous dielectrics, to replace the conventional dielectrics used to manufacture electronic chips. The introduction of ‘air pores’ inside the dielectric used in chips may improve the delay, but it leads to several thermal and electrical reliability concerns. In this thesis, we argue that using differential equations to simulate effects on the nano-scale to explore such reliability issues is insufficient, and a simulation method based on individual atom/ion movement should be used to describe it. Here we provide a simulation model to explain the diffusivity of copper under thermal stress, as well as movement of Cu ions during electric stress in porous dielectrics, using our particle movement based simulation model, and prove that it delivers correct results. Secondly, the delay is especially significant for processor to memory communication. Thus, integrating memory close to processor is another method to reduce the delay. Resistive RAM (RRAM) is one such novel RAM technology that can be integrated close to processor. However due to usage of non-native as well as expensive materials, RRAM has not been commercially integrated close to processor. In this thesis, we also present a functioning RRAM using cheaper materials, as well as materials that are native to present electronics.
42

Resistive Switching Behavior in Low-K Dielectric Compatible with CMOS Back End Process

Fan, Ye 16 January 2017 (has links)
In an effort to lower interconnect time delays and power dissipation in highly integrated logic and memory nanoelectronic products, numerous changes in the materials and processes utilized to fabricate the interconnect have been made in the past decade. Chief among these changes has been the replacement of aluminum (Al) by copper (Cu) as the interconnect metal and the replacement of silicon dioxide (SiO2) by so called low dielectric constant (low-k) materials as the insulating interlayer dielectric (ILD). Cu/low-k structure significantly decreases the RC delay compared with the traditional interconnect (Al/SiO₂). Therefore, the implementation of low-k dielectric in Cu interconnect structures has become one of the key subjects in the microelectronics industry. Incorporation of pores into the existing low-k dielectric is a favorable approach to achieve ultra low-k ILD materials. To bring memory and logic closer together is an effective approach to remove the latency constraints in metal interconnects. The resistive random access memories (RRAM) technology can be integrated into a complementary metal-oxide-semiconductor (CMOS) metal interconnect structure using standard processes employed in back-end-of-line (BEOL) interconnect fabrication. Based on this premise, the study of this thesis aims at assessing a possible co-integration of resistive switching (RS) cells with current BEOL technology. In particular, the issue is whether RS can be realized with porous dielectrics, and if so, what is the electrical characterization of porous low-k/Cu interconnect-RS devices with varying percentages of porosity, and the diffusive and drift transport mechanism of Cu across the porous dielectric under high electric fields. This work addresses following three areas: 1. Suitability of porous dielectrics for resistive switching memory cells. The porous dielectrics of various porosity levels have been supplied for this work by Intel Inc. In course of the study, it has been found that Cu diffusion and Cu+ ion drift in porous materials can be significantly different from the corresponding properties in non-porous materials with the same material matrix. 2. Suitability of ruthenium as an inert electrode in resistive switching memory cells. Current state-of-the-art thin Cobalt (Co)/Tantalum Nitride (TaN) bilayer liner with physical vapor deposited (PVD) Cu-seed layer has been implemented for BEOL Cu/low-k interconnects. TaN is used for the barrier and Co is used to form the liner as well as promoting continuity for the Cu seed. Also, the feasibility of depositing thin CVD ruthenium (Ru) liners in BEOL metallization schemes has been evaluated. For this study, Ru is used as a liner instead of Ta or Co in BEOL interconnects to demonstrate whether it can be a potential candidate for replacing PVD-based TaN/Ta(Co)/Cu low-k technology. In this context, it is of interest to investigate how Ru would perform in well-characterized RS cell, like Cu/TaOx/Ru, given the fact that Cu/TaOx/Pt device have been proven to be good CBRAM device due to its excellent unipolar and bipolar switching characteristics, device performance, retention, reliability. If Cu/TaOx/Ru device displays satisfactory resistive switching behavior, Cu/porous low-k dielectric/Ru structure could be an excellent candidate as resistive switching memory above the logic circuits in the CMOS back-end. 3. Potential of so-called covalent dielectric materials for BEOL deployment and possibly as dielectric layer in the resistive switching cells. The BEOL reliability is tied to time dependent failure that occurs inside dielectric between metal lines. Assessing the suitability of covalent dielectrics for back-end metallization is therefore an interesting topic. TDDB measurements have been performed on pure covalent materials, low-k dielectric MIM and MI-semiconductor (MIS) devices supplied by Intel Inc. / Master of Science / While the scaling of conventional memories based on floating gate MOSFETs is getting increasingly difficult, novel types of non-volatile memories, such as resistive-switching memories, have recently been of interest to both industry and academia. Resistive switching memory is being considered for next-generation non-volatile memory due to relatively high switching speed, high scalability, low power consumption, good retention and simple structure. Additionally, these twoterminal devices operate by changing resistance from high resistance OFF-state (HRS) to low resistance ON-state (LRS) in response to applied voltage or current due to the formation and rupture of a conductive filament. In particular, Conductive Bridging Random Access Memory (CBRAM), also referred as Programmable Metallization Cell (PMC), is a promising candidate for a resistive memory device due to its highly scalable and low-cost technology. Currently, the interconnect RC scaling methods have reached their limits and there is an urgent need for alternative ways to reduce or remove the latency constraints in CMOS low-k/Cu interconnect. One method is building CBRAM directly into a low-k/Cu interconnects to reduce the latency in connectivity constrained computational devices and the chip’s footprint by stacking memory on top of logic circuits. This is possible since the Cu metal lines and low-k/Cu interconnect already prefigure a potential RS device. This work addresses three areas: Firstly, the suitability of porous dielectrics for resistive switching memory cells. Secondly, the suitability of ruthenium as an inert electrode in resistive switching memory cells. If Ru resistive memory device displays satisfactory resistive switching behavior, Cu/porous low-k dielectric/Ru structure could be an excellent candidate as resistive switching memory above the logic circuits in the CMOS back-end-of-line (BEOL). Thirdly, the potential of so-called covalent dielectric materials for BEOL deployment and possibly as dielectric layer in the resistive switching cells.
43

Entwicklung eines resistiven Verfahrens zur Imprägnierung und Konsolidierung von auf Kohlenstofffasern basierenden thermoplastischen Hybridgarntextilien

Reese, Julian 29 June 2021 (has links)
Die Textiltechnik ermöglicht den Einsatz von rezyklierten Kohlenstofffasern in thermoplastischen Faserverbundwerkstoffen mit hohen Festigkeitsanforderungen. Das Erreichen vergleichbarer mechanischer Eigenschaften entsprechender endlosfaserverstärkter Verbundwerkstoffe wird durch die Nutzung von Stapelfaser-Hybridgarntextilien realisiert. Die Anwendung von thermoplastischen Hybridgarntextilien für die Herstellung von mehr als 100.000 Bauteilen pro Jahr erfordert jedoch eine kurze Taktzeit zur Imprägnierung und Konsolidierung des textilen Halbzeugs. Diese ist in dem derzeitigen Stand der Technik nicht gegeben, sodass hier Forschungsbedarf besteht. Die vorliegende Arbeit präsentiert eine Methode zur Reduktion der Taktzeit zur Imprägnierung und Konsolidierung komplexer Bauteilgeometrien auf Basis leitfähiger Hybridgarntextilien von derzeitig mehreren Minuten auf unter eine Minute, mit Potenzial zur weiteren Minimierung. Dies erfolgt mittels In-situ-Erwärmung im formgebenden Werkzeug unter Nutzung der Widerstandsverluste bei Stromfluss durch die leitfähigen Verstärkungsfasern. Neben der Charakterisierung und Simulation der Erwärmung im Mehrlagengewebe wird eine Parameteranalyse an generischen Probekörpern durchgeführt, um die Machbarkeit zu demonstrieren. Genauso findet eine erfolgreiche Skalierung der Technologie durch Übertragung der Ergebnisse auf eine komplexe Bauteilgeometrie anhand einer innovativen Werkzeugtechnologie statt. Am Ende der Arbeit erfolgt eine wirtschaftliche Betrachtung der kompletten Prozesskette von der einzelnen Faser, über den Hybridroving und das Mehrlagengewebe, bis zum fertigen Bauteil. Die Arbeit zeigt eine Technologie zur wirtschaftlichen Fertigung von Bauteilen aus rezyklierten Kohlenstofffasern in unter einer Minute Taktzeit. Des Weiteren bieten sich Vorteile durch die geringen Materialkosten des Hybridrovings, den hohen Grad der Automatisierung und die energetisch effiziente intrinsische Erwärmung des Halbzeugs.
44

Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

Malmberg, Jenny-Ann January 2003 (has links)
It is relatively straightforward to establish equilibrium inmagnetically confined plasmas, but the plasma is frequentlysucceptible to a variety of instabilities that are driven bythe free energy in the magnetic field or in the pressuregradient. These unstable modes exhibit effects that affect theparticle, momentum and heat confinement properties of theconfiguration. Studies of the dynamics of several of the mostimportant modes are the subject of this thesis. The studies arecarried out on plasmas in the reversed field pinch (RFP)configuration. One phenomenon commonly observed in RFPs is mode walllocking. The localized nature of these phase- and wall lockedstructures results in localized power loads on the wall whichare detrimental for confinement. A detailed study of the walllocked mode phenomenon is performed based on magneticmeasurements from three RFP devices. The two possiblemechanisms for wall locking are investigated. Locking as aresult of tearing modes interacting with a static field errorand locking due to the presence of a non-ideal boundary. Thecharacteristics of the wall locked mode are qualitativelysimilar in a device with a conducting shell system (TPE-RX)compared to a device with a resistive shell (Extrap T2). Atheoretical model is used for evaluating the threshold valuesfor wall locking due to eddy currents in the vacuum vessel inthese devices. A good correlation with experiment is observedfor the conducting shell device. The possibility of succesfully sustaining discharges in aresistive shell RFP is introduced in the recently rebuiltdevice Extrap T2R. Fast spontaneous mode rotation is observed,resulting in low magnetic fluctuations, low loop voltage andimproved confinement. Wall locking is rarely observed. The lowtearingmode amplitudes allow for the theoretically predictedinternal nonresonant on-axis resistive wall modes to beobserved. These modes have not previously been distinguisheddue to the formation of wall locked modes. The internal andexternal nonresonant resistive wall modes grow on the timescale of the shell penetration time. These growth rates dependon the RFP equilibrium. The internal nonresonant resistive wallmodes dominate in Extrap T2R, especially for shallow reverseddischarges. The external nonresonant modes grow solely in deepreversal discharges. <b>Keywords</b>Nuclear fusion, reversed field pinch, resistiveinstabilities, wall locked modes, tearing modes, resistiveshell modes, field errors, EXTRAP-T2, EXTRAP-T2R, TPE-RX
45

Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

Malmberg, Jenny-Ann January 2003 (has links)
<p>It is relatively straightforward to establish equilibrium inmagnetically confined plasmas, but the plasma is frequentlysucceptible to a variety of instabilities that are driven bythe free energy in the magnetic field or in the pressuregradient. These unstable modes exhibit effects that affect theparticle, momentum and heat confinement properties of theconfiguration. Studies of the dynamics of several of the mostimportant modes are the subject of this thesis. The studies arecarried out on plasmas in the reversed field pinch (RFP)configuration.</p><p>One phenomenon commonly observed in RFPs is mode walllocking. The localized nature of these phase- and wall lockedstructures results in localized power loads on the wall whichare detrimental for confinement. A detailed study of the walllocked mode phenomenon is performed based on magneticmeasurements from three RFP devices. The two possiblemechanisms for wall locking are investigated. Locking as aresult of tearing modes interacting with a static field errorand locking due to the presence of a non-ideal boundary. Thecharacteristics of the wall locked mode are qualitativelysimilar in a device with a conducting shell system (TPE-RX)compared to a device with a resistive shell (Extrap T2). Atheoretical model is used for evaluating the threshold valuesfor wall locking due to eddy currents in the vacuum vessel inthese devices. A good correlation with experiment is observedfor the conducting shell device.</p><p>The possibility of succesfully sustaining discharges in aresistive shell RFP is introduced in the recently rebuiltdevice Extrap T2R. Fast spontaneous mode rotation is observed,resulting in low magnetic fluctuations, low loop voltage andimproved confinement. Wall locking is rarely observed. The lowtearingmode amplitudes allow for the theoretically predictedinternal nonresonant on-axis resistive wall modes to beobserved. These modes have not previously been distinguisheddue to the formation of wall locked modes. The internal andexternal nonresonant resistive wall modes grow on the timescale of the shell penetration time. These growth rates dependon the RFP equilibrium. The internal nonresonant resistive wallmodes dominate in Extrap T2R, especially for shallow reverseddischarges. The external nonresonant modes grow solely in deepreversal discharges.</p><p><b>Keywords</b>Nuclear fusion, reversed field pinch, resistiveinstabilities, wall locked modes, tearing modes, resistiveshell modes, field errors, EXTRAP-T2, EXTRAP-T2R, TPE-RX</p>
46

Comutação resistiva por filamentos verticais em filmes finos de ZnO

Melo, Adolfo Henrique Nunes 26 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The resistive random access memories (ReRAM) are a class of emerging devices of the new generation of non-volatile memories. Many researchers have been providing many efforts to understand and develop these new memories by presenting simple metal-insulator-metal structure (MIM), easy of read / write, high storage density and low power consumption. The resistive switching (RS) is the basic phenomenon for the functioning of these memories, in which when a given voltage is applied to the MIM device, it may suffer the switching from initial insulating resistance state (HRS - High Resistance State) to a conductor resistance state (LRS - Low resistance state). The RS has been observed in various materials such as ZnO, NiO, perovskites and some solid electrolyte, in which two typical behaviors were observed: unipolar and bipolar. The unipolar switching behavior is independent of the applied polarity, while the bipolar behavior is not dependent. However, the influence of the insulating medium at kind behavior has not been known yet or how the insulating properties of the crystal may favor one or other behavior kind. Thus, in this study were constructed devices with structure Pt/ZnO(t)/ITO and Pt/ZnO(t)/Pt on glass substrates, where t is the deposition time of the ZnO layer varing from 3 min to 3 h. XRD measurements were performed showing that the crystallinity of the samples increased with the deposition time t > 30 min, however, the devices with t < 30 min no diffraction peak was observed. The RS behavior of all devices indicated that the switching from HRS to LRS was given by creation of conducting filaments based on oxygen vacancies, connecting the electrodes. It was observed that there was no significant influence of the lower electrode from the value of the filament forming voltage. In all devices the process of destruction of the filaments was based on the Joule effect, in which the conductive path is permanently destroyed that caused structural damage inside the ZnO matrix. The analyses showed that the behavior of RS was quality dependent of ZnO matrix, where appropriate values of oxygen vacancies are necessary for better performance in resistive memory. / As memórias resistivas de acesso aleatório (ReRAM) são uma classe de dispositivos emergentes da nova geração de memórias não voláteis. Muitos pesquisadores vêm dispondo muitos esforços para compreender e desenvolver essas novas memórias por apresentarem estrutura simples metal-isolante-metal (MIM), facilidade de gravação/leitura, alta densidade de armazenamento e baixa potência consumida. A comutação resistiva (CR) é o fenômeno base para o funcionamento dessas memórias, na qual quando uma dada tensão elétrica é aplicada no dispositivo MIM, este pode sofrer a comutação de seu estado de resistência inicialmente isolante (HRS – High Resistance State) para um estado de resistência condutora (LRS – Low Resistance State). A CR já foi observada em diversos materiais como ZnO, NiO, perovskitas e alguns sólidos eletrolíticos, na qual dois comportamentos típicos foram percebidos: unipolar e bipolar. No comportamento unipolar a comutação é independente da polaridade aplicada, ao passo que no comportamento bipolar há essa dependência. No entanto, ainda não é bem conhecida a influência do meio isolante no tipo de comportamento ou como as propriedades cristalinas do isolante podem favorecer um comportamento ou outro. Dessa forma, neste trabalho foram construídos, através de um sistema de sputtering, dispositivos com estrutura Pt/ZnO(t)/ITO e Pt/ZnO(t)/Pt sobre substratos de vidro, onde t foi o tempo de deposição da camada de ZnO que variou de 3 min a 3 h. Medidas de DRX foram realizadas mostrando que a cristalinidade das amostras cresceu com o tempo de deposição para t > 30 min, porém os dispositivos com t < 30 min nenhum plano cristalino foi observado. O comportamento da CR de todos os dispositivos indicou que a comutação de HRS para LRS se deu por criação de filamentos condutores baseados em vacâncias de oxigênio, conectando os eletrodos. Foi observado que não houve influências significativas do eletrodo inferior em relação ao valor da tensão de formação filamentar. Em todos os dispositivos o processo de destruição dos filamentos foi baseado no efeito Joule, na qual o caminho condutor foi destruído de forma permanente causando danos estruturais no interior da matriz do ZnO. As análises mostraram que os comportamentos da CR dependeram da qualidade da matriz do ZnO, na qual valores adequados de vacâncias de oxigênio se fazem necessários para o bom desempenho em memória resistiva.
47

Evaluation of Thermal Stress in Carbon/Glass Hybrid and Glass Nanocomposite under Resistive Heating

Gnanasekar, Vignesh Kumar January 2015 (has links)
No description available.
48

Patterned resistive sheets for potential use in 3D stacked multispectral reduced thermal mass microbolometer

Kim, Hoo 23 October 2014 (has links)
Patterned resistive sheets (PRS) are resistive sheets with periodic patterns which provide further advantages to the functionality of the microbolometer. This study examines the potential of both single- and double-layer designs to achieve spectral selectivity in both broadband and narrowband absorption in the microbolometer's application. First, important design parameters, including rules and processes, are established. These include descriptions of sheet resistance, air gap, material refractive index, thicknesses of dielectric and bolometric layers, mirror, pattern shape and size, and unit cell period. Moreover, interactions among these elements are examined. Second, single-layer designs using dipole and slot PRS are introduced as initial designs for the reduced thermal mass design. Applying holes without changing spectral selectivity are investigated for narrowband application. Moreover, the method to tune the change of spectral selectivity is introduced. Third, newly stacked two-color design is suggested. The out-of-band transmission and reflection characteristics of the dipole and slot PRS are investigated to increase the absorption of each layer. Additionally, different pattern shapes, such as the circular patch and square patch, are investigated for easier fabrication. / text
49

The application of respiratory muscle training to competitive rowing

Griffiths, Lisa Ann January 2010 (has links)
Respiratory muscle training (RMT) has been shown to improve exercise tolerance during a wide range of exercise modalities and durations of activity (McConnell & Romer, 2004b). However, there is a limited amount of research characterising the influence of RMT in specific athletic populations, or examining any sport-specific factors that may influence the benefits of RMT. Hence, the purpose of this dissertation was to evaluate the application of RMT in competitive rowers and to explore methods of optimising this to rowing. Results: Inspiratory muscle training (IMT) increased inspiratory muscle strength (~20-29%; p < 0.05) and attenuated inspiratory muscle fatigue (~8-28%; p < 0.05) during time trial performance in club-level and elite rowers. However, only in the club-level oarsmen was IMT associated with a measurable improvement in rowing performance (2.7% increase in mean power; p < 0.05). Expiratory muscle training (EMT) provided no ergogenic effect, and concurrent EMT and IMT did not enhance performance above that seen with IMT alone. IMT loads performed at 60-70% of maximal inspiratory mouth pressure (PImax) were equivalent to the widely used 30 repetition maximum, which is higher than reported for non-rowers (Caine & McConnell, 1998a); further, a load of 60% PImax was sufficient to activate the inspiratory muscle metaboreflex, as evidenced by a time-dependent rise in heart rate (70.1 ± 13.2 to 98.0 ± 22.8 bpm; p < 0.05) and mean arterial blood pressure (92.4 ± 8.5 to 99.7 ± 10.1 mmHg; p < 0.05). Higher and lower inspiratory loads did not activate the metaboreflex. Assessments of flow, pressure and volume in rowing relevant postures revealed no significant impairments, but optimal function occurred in the most upright postures. Conclusions: These data support the application of IMT, but not EMT, in elite and sub-elite rowers, and suggest that a load of 60-70% of PImax provides metaboreflex activation during loading. Further, the data do not support a requirement to undertake IMT in rowing relevant postures.
50

Clinical and quality aspects of native and transplant kidney biopsies in Sweden

Peters, Björn January 2016 (has links)
Percutaneous kidney biopsies have been performed since 1944 to establish diagnoses and treatment. Risk factors based on a limited amount of data have shown age, blood pressure, kidney function and needle size as some risk factors for biopsy complications. Although the techniques of biopsy have improved over the years, it is still an invasive procedure and serious complications can occur. The overall aim of this thesis was to obtain a large series of data from biopsy procedures and to use these to bring further light on risk factors to help minimize the risk for patients and to optimize diagnostics. Specific aims were to clarify if different factors, such as gender, diagnoses, localization of biopsies, needle types and sizes, could be useful to help minimize complication risks in native kidney biopsies (Nkb) and transplant kidney biopsies (Txb). Another point to investigate was the value of the Resistive Index (RI) obtained at ultrasound before performing Txb. Materials and methods: A protocol for prospective multicentre registration of various factors and complications associated with Nkb and Txb was designed. Consecutive data were obtained from seven hospitals. All biopsies, except one computer tomography-guided Nkb, were performed using real-time ultrasound guidance and an automated spring-loaded biopsy device. For the biopsies 14- to 20- Gauge (G) needles were used. The kidney function level, i.e. estimated glomerular filtration rate (eGFR), was calculated using the Modification of Diet in Renal Disease (MDRD) formula (GFR in mL/min per 1.73m2). For statistical analyses the IBM SPSS Statistic 22 (Armonk, NY, USA) and OpenEpi (Open Source Epidemiologic Statistics for Public Health, www.OpenEpi.com) were used. Data were presented as Odds Ratio (OR), Risk Ratio (RR) and Confidence Intervals (CI). A two sided p-value of &lt;0.05 was considered significant. In total 1299 consecutive biopsies (1039 native and 260 transplant kidneys) in 1178 patients (456 women and 722 men) were used for investigation. The median age of patients was 55 years (range 16 to 90 years). Major (require an intervention) and minor biopsy complications (no need of intervention) were registered. Results: The overall frequency of biopsy complications for Nkb was 8.8% (major 6.7%, minor 2.1%) and for Txb was 6.5% (major 3.8%, minor 2.7%); no death. Women had a higher risk for development of major (10.7% versus 4.7%, OR 2.4, CI 1.4-4.2) and overall biopsy complications (13.2% versus 6.5%, OR 2.2, CI 1.4-3.5) compared to men in Nkb. In Nkb, major complications were more common after biopsies from the right kidney in women versus men (10.8% vs 3.1%, OR 3.7, CI 1.5–9.5), in patients with lower versus higher BMI (25.5 vs 27.3, p=0.016) and for younger versus older age (44.8 vs 52.3 years, p=0.002). Lower (90 mmHg) compared to higher (98 mmHg) mean arterial pressure in Txb indicated a risk of major complications (p=0.039). Factors such as number of passes and kidney function did not influence complication rates. Biopsy needles of 16 G compared to 18 G showed more glomeruli per pass in Nkb (11 vs 8, p&lt;0.001) and in Txb (12 vs 8, p&lt;0.001). Sub-analysis revealed that 18 G 19 mm side-notch needles in Nkb resulted in more major (11.3% vs 3%, OR 4.1, CI 1.4-12.3) and overall complications (12.4% vs 4.8%, OR 2.8, CI 1.1-7.1) in women than in men. If the physician had performed less compared to more than four Nkb per year, minor (3.5% vs 1.4%, OR 2.6, CI 1.1-6.2) and overall complications (11.5% vs 7.4%, OR 1.6, CI 1.1-2.5) were more common. The localization of biopsy within the kidney (Nkb and Txb) was not a risk factor for complications. Patients with IgA-nephritis compared to patients with other diseases had a higher risk of major complications (11.7% vs 6.4 %, OR 1.8, CI 1.1–3.2). More major complications were found in Nkb if they had higher versus lower degree of glomerulosclerosis (31% vs 20 %, p=0.008) and in Txb if there was a higher versus lower degree of interstitial fibrosis (82% vs 33%, p&lt;0.001). Re-biopsies (Nkb) were more common in patients with IgA-nephritis than those with other diseases (4.7% vs 1.3 %, OR 4, CI 1.5–11), in younger versus older age (42.6 vs 52.3 years, p=0.031), and in those with a higher versus lower degree of interstitial fibrosis (63% vs 34 %, p=0.046). In Txb, a RI≥0.8 compared to RI&lt;0.8 predicted major (13.3% vs 3.2%, RR 4.2, CI 1.3-14.1) and overall biopsy complications (16.7% vs 5.3%, RR 3.2, CI 1.2-8.6). In the group &lt;0.8, RI correlated with age (rs=0.28, p&lt;0.001) and systolic blood pressure (rs=0.18, p=0.02). In the group ≥0.8, RI correlated with degree of interstitial fibrosis (rs=0.65, p=0.006) and systolic blood pressure (rs=0.40, p=0.03). The multiple regression analysis showed that the &lt;0.8 RI group correlated only with age (p&lt;0.001), whereas the ≥0.8 RI group correlated only with the degree of interstitial fibrosis (p=0.003). Conclusions: The present results motivate greater attention to be paid to the possibility of major side-effects after Nkb in women and biopsies from their right side, but as well in younger patients, and in those with lower BMI. This also applies for patients with presumptive IgA-nephritis and higher degree of glomerulosclerosis. In Txb, patients with higher degree of interstitial fibrosis had a greater risk of major complications. Moreover, the present data indicate that Nkb and Txb should be preferably taken with 16 G needles with 20 mm sample size. This results in better histological quality and there is a lower risk for major complications as compared to 18 G needles. The localization of biopsy within the kidney (Nkb and Txb) does not alter complication rates. For Nkb there were fewer complications if the physician had performed at least four biopsies per year. A RI≥0.8 in Txb indicates a greater risk for major and overall complications.

Page generated in 0.0461 seconds