• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 11
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-contact Temperature Measurement of Stainless Steel in a TIG Welding Process

Pollard, William Nichols Jr. 04 November 2009 (has links)
The goal of this research was to design and test an experimental setup capable of performing a TIG welding process and acquiring temperature measurements near the weld with the use of an infrared spot sensor. The data collected can then be used to validate a computer simulation that models the exact same process. An experimental setup was built, and preliminary temperature data were collected. It was determined that infrared measurements taken at the arc contain excessive amounts of interfering radiation emanating from the welding zone. The optimal angle of orientation is normal to the weld line. In this way an infrared spot sensor can be focused on an area just down weld of the arc where the temperatures remain relatively high and thermal gradients, although still large, are at a minimum. Additional data were collected from thermocouples to validate the infrared sensor results and also to provide additional data that can be compared to a computer model. Sources of error were identified and recommendations were made as to how they can be avoided or minimized. / Master of Science
2

Patterned resistive sheets for potential use in 3D stacked multispectral reduced thermal mass microbolometer

Kim, Hoo 23 October 2014 (has links)
Patterned resistive sheets (PRS) are resistive sheets with periodic patterns which provide further advantages to the functionality of the microbolometer. This study examines the potential of both single- and double-layer designs to achieve spectral selectivity in both broadband and narrowband absorption in the microbolometer's application. First, important design parameters, including rules and processes, are established. These include descriptions of sheet resistance, air gap, material refractive index, thicknesses of dielectric and bolometric layers, mirror, pattern shape and size, and unit cell period. Moreover, interactions among these elements are examined. Second, single-layer designs using dipole and slot PRS are introduced as initial designs for the reduced thermal mass design. Applying holes without changing spectral selectivity are investigated for narrowband application. Moreover, the method to tune the change of spectral selectivity is introduced. Third, newly stacked two-color design is suggested. The out-of-band transmission and reflection characteristics of the dipole and slot PRS are investigated to increase the absorption of each layer. Additionally, different pattern shapes, such as the circular patch and square patch, are investigated for easier fabrication. / text
3

Study on molecular photoionization in femtosecond laser field

Li, Hui January 1900 (has links)
Master of Science / Department of Physics / Matthias Kling / This thesis consists of two major parts. The first part concerns studies of the orientation dependence of the ionization of diatomic molecules in intense, femtosecond two-color laser fields. The second part is about studies on the ionization mechanisms of the C[subscript]6[subscript]0 molecule in femtosecond near-infrared and ultraviolet laser fields. In the first part, experimental and theoretical results on the asymmetric ion emission of the heteronuclear molecules CO and NO in two-color laser fields are discussed. The two-color fields, which can be tailored by a relative phase, are used to ionize and dissociate CO and NO molecules, both of which are molecules with small polarizabilities. The resulting C[superscript]+, C[superscript]2[superscript]+, N[superscript]+ and O[superscript]+ ions are detected by a velocity map imaging (VMI) setup. The photoelectrons from above-threshold ionization (ATI) of Xe are studied under such a two-color field to assign the phase. For both CO and NO we find that enhanced ionization occurs when the molecule is oriented with the electric field pointing from the C or N atom toward the O atom. This is in agreement with the molecular orbital Ammosov-Delone-Krainov (MO-ADK) theory and the Stark-corrected strong-field-approximation (SFA) calculations. The second part is devoted to the investigation of the ionization mechanism of neutral C[subscript]6[subscript]0 molecules with 30 fs laser pulses at about 800 nm and with 50 fs pulses at about 400 nm. The angular distributions of photoelectrons are measured utilizing VMI. Measurements under different intensities are carried out for the two wavelengths. In our work, thermal electron emission is highly suppressed by the use of short pulses. For near-infrared excitation, photoelectron angular distributions (PADs) that contain six lobes are observed for low energy electrons. This behavior is different from studies for longer pulses of about 120 fs [1]. Further analysis indicates that the PADs might originate from single photon ionization of a super atomic molecular orbital (SAMO), however, a detailed assignment requires further theoretical work. The PADs for the ultraviolet excitation show very similar structures to earlier results [1]. For the near-infrared excitation, we have carried out studies as a function of the chirp of the pulses and find effects on photoelectron spectra and on PADs, which are tentatively explained by sequential multiphoton ionization via “doorway” states.
4

Application of Two-Color Pyrometry to Characterize the Two-Dimensional Temperature and Emissivity of Pulverized-Coal Oxy-Flames

Draper, Teri Snow 23 April 2012 (has links) (PDF)
Oxy-combustion is a developing technology that enables carbon dioxide (CO2) capture. Flame temperature and emissivity data were taken on a 150 kWth, pulverized-coal, burner flow reactor (BFR) that has been modified to run oxy-combustion with pure CO2 as simulated recycled flue gas. Data were taken at 78 conditions in which three parameters were varied, namely: the swirl angle of the fuel stream, the location of the oxidizer as it exited the burner, and the flow rate of diluent (pure CO2) added to the outer, secondary stream. At each condition, digital color images were obtained using a calibrated RGB camera. The images were used to determine lift-off length, temperature, and emissivity. The mathematical theory of two-color pyrometry and the calibration process used to measure the camera sensitivity is presented. The two most commonly used emissivity models in two-color pyrometry, the Hottel and Broughton and gray models, were investigated to determine which was the most appropriate for use in an oxy-coal flame. A significant difference of 7% in the temperature and 24% in the emissivity results were found when processing an image with the Hottel and Broughton and gray emissivity models. The Hottel and Broughton model was selected for processing, because the Hottel and Broughton model is more appropriate for soot which appeared to dominate flame emissions. Using the two-color data, several trends were documented. Flame temperature was seen to decrease with increasing CO2 flow rate. Within a given flame along the axial direction, temperature was seen to correlate with emissivity. As emissivity increased, flame temperature was seen to decrease. Many flames were lifted from the burner exit. Lift-off length was decreased and the flames became more attached by: 1) Increasing the amount of swirl given to the fuel stream, 2) Adding O2 to the center primary tube or 3) Decreasing the flow of secondary CO2. At higher center oxygen flow rates (above 8.5 kg/hr), the O2 jet velocity was large causing increased entrainment and mixing which degraded burner performance.
5

Predictive modeling of infrared detectors and material systems

Pinkie, Benjamin 17 February 2016 (has links)
Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.
6

Design, Fabrication and Testing of a Pressurized Oxy-Coal Reactor Exhaust System

Skousen, Aaron Bradley 01 June 2019 (has links)
One of the challenges facing engineers is to provide clean, sustainable, affordable and reliable electricity. One of the major pollutants associated with coal combustion is CO2. A proposed technology for efficiently capturing CO2 while producing electricity is pressurized oxy-combustion (POC). The first objective of this work is to design, build and demonstrate an exhaust system for a 20 atmosphere oxy-coal combustor. The second objective of this work is to design and build mounts for a two-color laser extinction method in the POC. The POC reactor enables the development of three key technologies: a coal dry-feed system, a high pressure burner, and an ash management system. This work focuses on cooling the flue gas by means of a spray quench and heat exchanger; controlling the reactor pressure and removing ash from the flue gas. Designs and models of each component in the exhaust systems are presented. Methods to test and assemble each system are also discussed. The spray quench flow rate was measured as a function of pump pressure. Theoretical models for the required amount of water in the spray quench, the flue gas composition, the length and number of tubes in the heat exchanger, and the cyclone collection efficiency are presented. The combined exhaust system is assembled and ready to be tested once issues involving the control system and burner are resolved.
7

Polarization Dependence of High Order Harmonic Generation from Solids in Reflection and Transmission Geometries

Crites, Erin L 01 January 2020 (has links)
High harmonic generation (HHG) is a process that occurs when an intense laser interacts with a material and generates new frequencies of light. HHG has many practical applications, namely as a spectroscopy technique and source for high frequency light and attosecond pulses. While HHG has been done extensively in gases, HHG in solids is a relatively new field. Solids are appealing as an HHG medium as they require much simpler equipment and are subsequently much more compact, and thus may have a variety of applications previously inaccessible to gas-phase HHG. However, the generation mechanism of HHG in solids has not been fully characterized yet, as the processes behind HHG in gases and solids are not synonymous. Here, we study the influence of polarization, symmetry, and setup geometry on HHG in solids. We study the propagation effects in a transmission geometry setup and use Jones calculus to counteract the polarization change from propagation. We compare these results to a reflection geometry setup, which naturally does not have propagation effects, to determine the validity of the polarization correction technique. We also look at the electric field symmetry dependence on HHG through the manipulation of the laser electric field with a two-color interferometer. The impact of symmetry dependence and propagation effects both contribute to a better understanding of the HHG process in solids.
8

Plasma diagnostics for particle confinement studies in magnetic fusion devices

Hägg, Linus January 2018 (has links)
This thesis investigates the performance and improves a double color interferometer setup, absolutely calibrates a line radiation Balmer H-alpha measurement setup, and uses measurements from both setups to estimate the particle confinement time of a plasma. The double colour interferometer at the magnetic confinement plasma device EXTRAP T2R measures the line integrated electron density of the plasma. Electron density is an important parameter in fusion plasma diagnostics but the interferometer at EXTRAP T2R have had several problems. The interferometer setup was changed as follows: A piezo phase shifter was added, the beam expander was adjusted with the help of thermal image plates, and the electronics setup was rewired to remove interferences. The setup for Balmer H-alpha line radiation measurements was calibrated and characterized. The particle confinement time was estimated using Abel inversion to produce radial profiles of electron density, electron temperature and H-alpha irradiance. The interferometer upgrades did not solve all the problems, but the electron density measurements are now reliable up to around 10 – 20 ms. Since the interferometer only has one channel the electron density profile could not be determined reliably. However, the particle confinement time was estimated for two possible electron density profiles and the results agree with previous studies. / Fusionsvetenskap strävar efter att producera en ny, effektiv energikälla. I och med den ökande energikonsumtionen får fusionsvetenskap en allt viktigare roll i samhället. Kärnfusion har stor potential som energikälla, men att utvinna dess energi kommer med lika stora tekniska utmaningar. I det här projektet tacklas en av dessa utmaningar; att mäta elektrontätheten och joniseringshastigheten i ett plasma. Detta utfördes på EXTRAP T2R, ett magnetiskt inneslutningssystem för plasma på Alfvén laboratoriet, Kungliga Tekniska högskolan, Stockholm. Projektet behandlar två olika mätinstrument: En interferometer som mäter elektrontätheten i plasmat och en H-alphaexperimentuppställning som mäter joniseringshastigheten i plasmat. Interferometern har uppgraderats och justerats för att ge mer tillförlitliga mätningar. Den behöver förbättras ytterligare men kan ger nu tillförlitliga täthetsmätningar i början av plasma-skott. H$\alpha$-experimentuppställningen har karakteriserats och kalibrerats. Genom att mäta elektrontätheten och joniseringshastigheten kan partikelinneslutningstiden uppskattas. Partikelinneslutningstiden är den genomsnittliga tiden innan en partikel lämnar plasmat via en av många processer. Denna uppskattning baserades på två möjliga täthetsprofiler i plasmat eftersom en fullständig mätning skulle kräva flera interferometrar. Trots detta så stämmer uppskattningen väl överens med tidigare studier.
9

Charge transport study of InGaAs two-color QWIPs

Hoang, Vu Dinh 06 1900 (has links)
Approved for public release, distribution is unlimited / In this thesis, a series of experiments were performed to characterize the material properties of InGaAs/GaAs for use in a two-color quantum-well IR photodetector (QWIP) design. Results from room temperature studies using cathodoluminescence and photoluminescence indicated light emission at 858 nm and 1019 nm from GaAs and InGaAs, respectively. Using a direct transport imaging technique, an edge dislocation pattern was observed and shown to be confined to the InGaAs layer of the material. A dislocation density measurement was performed and was shown to be less than 2000 lines/cm. Quantitative intensity level measurements indicated fluctuation in the region of dislocations to be less than 30% of the signal to background level. Finally, a spot mode study using the direct transport imaging method was performed to evaluate the feasibility of using this technique for contact-less diffusion length measurements. / Civilian, Department of Air Force
10

Imagerie de fluorescence à haute résolution : étude de la localisation nucléolaire de la protéine de la nucléocapside du VIH / Nucleolar distribution of the HIV-1 nucleocapsid protein investigated by the super-resolution microscopy

Glushonkov, Oleksandr 06 April 2018 (has links)
Au cours de ce travail de thèse expérimental, nous nous sommes intéressés à l’étude de la localisation nucléaire et nucléolaire de la protéine de la nucléocapside (NC) du VIH-1. Des études antérieures menées au laboratoire avaient mis en évidence une très forte accumulation de la NC dans les nucléoles. Ce compartiment nucléaire est connu pour être ciblé par de nombreux virus afin de promouvoir leur réplication. Des expériences de microscopie électronique avaient révélé la structure complexe du nucléole et montré qu’il est composé de trois sous-compartiments : les centres fibrillaires, le compartiment fibrillaire dense et le compartiment granulaire dans lesquels se déroule la synthèse des ribosomes. Afin de caractériser la localisation de la NC dans ces trois sous-compartiments, nous avons développé une approche de microscopie optique à haute résolution permettant d’obtenir des images à deux couleurs avec une résolution spatiale améliorée. Pour cela, nous avons mis au point un protocole qui permet d’utiliser simultanément une protéine fluorescente photocommutable et un fluorophore organique introduit par immunomarquage. Après avoir minimisé les aberrations optiques et corrigé les dérives mécaniques inhérentes au montage, nous avons visualisé simultanément la localisation de la NC surexprimée dans des cellules HeLa avec des marqueurs spécifiques des trois sous-compartiments nucléolaires (immunomarquage). La microscopie de fluorescence à haute résolution a permis de résoudre pour la première fois les différents compartiments et de montrer que la NC se localise préférentiellement dans le compartiment granulaire. Finalement, des expériences préliminaires avec des cellules vivantes ont permis de mettre en évidence que la NC est transportée de manière active dans le noyau et qu’elle pourrait interagir directement avec des protéines nucléolaires / During this experimental thesis work, we investigated the nuclear and nucleolar localization of the nucleocapsid protein (NC) of HIV-1. Previous studies performed in our laboratory evidenced a strong accumulation of NC in a subnuclear structure called nucleolus. Playing role in multiple cellular processes, nucleolus is often targeted by viruses to promote their replication. Electron microscopy revealed three nucleolar components (fibrillar centers, dense fibrillar component and granular component) associated to specific steps of the ribosome biogenesis. To characterize the distribution of the NC in these three sub-compartments and therefore shed light on the nucleolar localization of NC during the replication cycle, we developed a high-resolution optical microscopy approach. After having minimized the optical aberrations and corrected the mechanical drifts inherent to the imaging setup, the NC-mEos2 fusion protein overexpressed in HeLa cells was visualized simultaneously with immunolabeled nucleolar markers. The use of high-resolution fluorescence microscopy enabled us to resolve for the first time the three nucleolar compartments and to demonstrate the preferential localization of NC in the granular compartment of nucleolus. Finally, preliminary experiments performed with living cells showed that NC is actively transported in the nucleus and therefore may interact directly with nucleolar proteins.

Page generated in 0.0627 seconds