• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

« Resolution Search » et problèmes d’optimisation discrète / Resolution Search and Discrete Optimization Problems

Posta, Marius 03 February 2012 (has links)
Les problèmes d’optimisation discrète sont pour beaucoup difficiles à résoudre, depar leur nature combinatoire. Citons par exemple les problèmes de programmationlinéaire en nombres entiers. Une approche couramment employée pour les résoudreexactement est l’approche de Séparation et Évaluation Progressive. Une approchedifférente appelée « Resolution Search » a été proposée par Chvátal en 1997 pourrésoudre exactement des problèmes d’optimisation à variables 0-1, mais elle restemal connue et n’a été que peu appliquée depuis.Cette thèse tente de remédier à cela, avec un succès partiel. Une première contributionconsiste en la généralisation de Resolution Search à tout problème d’optimisationdiscrète, tout en introduisant de nouveaux concepts et définitions. Ensuite,afin de confirmer l’intérêt de cette approche, nous avons essayé de l’appliquer enpratique pour résoudre efficacement des problèmes bien connus. Bien que notrerecherche n’ait pas abouti sur ce point, elle nous a amené à de nouvelles méthodespour résoudre exactement les problèmes d’affectation généralisée et de localisationsimple. Après avoir présenté ces méthodes, la thèse conclut avec un bilan et desperspectives sur l’application pratique de Resolution Search. / The combinatorial nature of discrete optimization problems often makes them difficultto solve. Consider for instance integer linear programming problems, which arecommonly solved using a Branch-and-Bound approach. An alternative approach,Resolution Search, was proposed by Chvátal in 1997 for solving 0-1 optimizationproblems, but remains little known to this day and as such has seen few practicalapplications.This thesis attempts to remedy this state of affairs, with partial success. Itsfirst contribution consists in the generalization of Resolution Search to any discreteoptimization problem, while introducing new definitions and concepts. Next, wetried to validate this approach by attempting to solve well-known problems efficientlywith it. Although our research did not succeed in this respect, it lead usto new methods for solving the generalized assignment and uncapacitated facilitylocation problems. After presenting these methods, this thesis concludes with asummary of our attempts at practical application of Resolution Search, along withfurther perspectives on this matter.
2

Algoritmos exatos para problema da clique maxima ponderada / Exact algorithms for the maximum-weight clique problem / Algorithmes pour le problème de la clique de poids maximum

Araujo Tavares, Wladimir 06 April 2016 (has links)
Dans ce travail, nous présentons trois nouveaux algorithmes pour le problème de la clique de poids maximum. Les trois algorithmes dépendent d'un ordre initial des sommets. Deux ordres sont considérés, l'un en fonction de la pondération des sommets et l'autre en fonction de la taille voisinage des sommets. Le premier algorithme, que nous avons appelé BITCLIQUE, est une algorithme de séparation et évaluation. Il réunit efficacement plusieurs idées déjà utilisées avec succès pour résoudre le problème, comme l'utilisation d'une heuristique de coloration pondérée en nombres entiers pour l'évaluation ; et l'utilisation de vecteurs de bits pour simplifier les opérations sur le graphe. L'algorithme proposé surpasse les algorithmes par séparation et évaluation de l'état de l'art sur la plupart des instances considérées en terme de nombre de sous-problèmes énumérés ainsi que en terme de temps d'exécution. La seconde version est un algorithme des poupées russes, BITRDS, qui intègre une stratégie d'évaluation et de ramification de noeuds basée sur la coloration pondérée. Les simulations montrent que BITRDS réduit à la fois le nombre de sous-problèmes traités et le temps d'exécution par rapport à l'algorithme de l'état de l'art basée sur les poupées russes sur les graphes aléatoires avec une densité supérieure à 50%. Cette différence augmente à la mesure que la densité du graphe augmente. D'ailleurs, BITRDS est compétitif avec BITCLIQUE avec une meilleure performance sur les instances de graphes aléatoires avec une densité comprise entre 50% et 80%. Enfin, nous présentons une coopération entre la méthode poupées russes et la méthode de ``Resolution Search''. L'algorithme proposé, appelé BITBR, utilise au même temps la coloration pondérée et les limites supérieures donnés par les poupées pour trouver un ``nogood''. L'algorithme hybride réduit le nombre d'appels aux heuristiques de coloration pondérée, atteignant jusqu'à 1 ordre de grandeur par rapport à BITRDS. Plusieurs simulations sont réalisées avec la algorithmes proposés et les algorithmes de l'état de l'art. Les résultats des simulations sont rapportés pour chaque algorithme en utilisant les principaux instances disponibles dans la littérature. Enfin, les orientations futures de la recherche sont discutées. / In this work, we present three new exact algorithms for the maximum weight clique problem. The three algorithms depend on an initial ordering of the vertices. Two ordering are considered, as a function of the weights of the vertices or the weights of the neighborhoods of the vertices. This leads to two versions of each algorithm. The first one, called BITCLIQUE, is a combinatorial Branch & Bound algorithm. It effectively combines adaptations of several ideas already successfully employed to solve the problem, such as the use of a weighted integer coloring heuristic for pruning and branching, and the use of bitmap for simplifying the operations on the graph. The proposed algorithm outperforms state-of-the-art Branch & Bound algorithms in most instances of the considered in terms of the number of enumerated subproblems as well in terms of computational time The second one is a Russian Dolls, called BITRDS, which incorporates the pruning and branching strategies based on weighted coloring. Computational tests show that BITRDS reduces both the number of enumerated subproblems and execution time when compared to the previous state-of-art Russian Dolls algorithm for the problem in random graph instances with density above 50%. As graph density increases, this difference increases. Besides, BITRDS is competitive with BITCLIQUE with better performance in random graph instances with density between 50% and 80%. Finally, we present a cooperation between the Russian Dolls method and the Resolution Search method. The proposed algorithm, called BITBR, uses both the weighted coloring and upper bounds given by the dolls to find a nogood. The hybrid algorithm reduces the number of coloring heuristic calls, reaching up to 1 order of magnitude when compared with BITRDS. However, this reduction decreases the execution time only in a few instances. Several computational experiments are carried out with the proposed and state-of-the-art algorithms. Computational results are reported for each algorithm using the main instances available in the literature. Finally, future directions of research are discussed.
3

" Resolution Search " et problèmes d'optimisation discrète

Posta, Marius 03 February 2012 (has links) (PDF)
Les problèmes d'optimisation discrète sont pour beaucoup difficiles à résoudre, depar leur nature combinatoire. Citons par exemple les problèmes de programmationlinéaire en nombres entiers. Une approche couramment employée pour les résoudreexactement est l'approche de Séparation et Évaluation Progressive. Une approchedifférente appelée " Resolution Search " a été proposée par Chvátal en 1997 pourrésoudre exactement des problèmes d'optimisation à variables 0-1, mais elle restemal connue et n'a été que peu appliquée depuis.Cette thèse tente de remédier à cela, avec un succès partiel. Une première contributionconsiste en la généralisation de Resolution Search à tout problème d'optimisationdiscrète, tout en introduisant de nouveaux concepts et définitions. Ensuite,afin de confirmer l'intérêt de cette approche, nous avons essayé de l'appliquer enpratique pour résoudre efficacement des problèmes bien connus. Bien que notrerecherche n'ait pas abouti sur ce point, elle nous a amené à de nouvelles méthodespour résoudre exactement les problèmes d'affectation généralisée et de localisationsimple. Après avoir présenté ces méthodes, la thèse conclut avec un bilan et desperspectives sur l'application pratique de Resolution Search.
4

Etude de Resolution Search pour la programmation linéaire en variables binaires

Boussier, Sylvain 27 November 2008 (has links) (PDF)
Dans cette thèse, nous nous intéressons à la résolution exacte de programmes linéaires en variables binaires. L'ensemble de nos travaux s'articule autour de l'étude de Resolution search (Chvátal (1997)) pour la résolution du problème du sac à dos multidimensionnel en 0-1. Dans un premier temps, nous proposons un algorithme d'énumération implicite centré sur une analyse des coûts réduits à l'optimum de la relaxation continue ainsi que sur une décomposition de l'espace de recherche en hyperplans. Nous proposons une stratégie de branchement originale visant à élaguer au plus tôt l'arbre de recherche. Cette stratégie est efficace pour résoudre des instances jugées difficiles mais rend l'algorithme dépendant de la connaissance d'une bonne solution de départ. Dans un deuxième temps, nous proposons une méthode de résolution plus autonome combinant Resolution search avec une énumération implicite inspirée du premier algorithme. Cette coopération permet d'obtenir rapidement de bonnes solutions et prouve les optimums d'instances de plus grande taille. Finalement, nous présentons une application de Resolution Search à la résolution d'un problème de planification dans le domaine des télécommunications.
5

« Resolution Search » et problèmes d’optimisation discrète

Posta, Marius 02 1900 (has links)
Les problèmes d’optimisation discrète sont pour beaucoup difficiles à résoudre, de par leur nature combinatoire. Citons par exemple les problèmes de programmation linéaire en nombres entiers. Une approche couramment employée pour les résoudre exactement est l’approche de Séparation et Évaluation Progressive. Une approche différente appelée « Resolution Search » a été proposée par Chvátal en 1997 pour résoudre exactement des problèmes d’optimisation à variables 0-1, mais elle reste mal connue et n’a été que peu appliquée depuis. Cette thèse tente de remédier à cela, avec un succès partiel. Une première contribution consiste en la généralisation de Resolution Search à tout problème d’optimisation discrète, tout en introduisant de nouveaux concepts et définitions. Ensuite, afin de confirmer l’intérêt de cette approche, nous avons essayé de l’appliquer en pratique pour résoudre efficacement des problèmes bien connus. Bien que notre recherche n’ait pas abouti sur ce point, elle nous a amené à de nouvelles méthodes pour résoudre exactement les problèmes d’affectation généralisée et de localisation simple. Après avoir présenté ces méthodes, la thèse conclut avec un bilan et des perspectives sur l’application pratique de Resolution Search. / The combinatorial nature of discrete optimization problems often makes them diffi- cult to solve. Consider for instance integer linear programming problems, which are commonly solved using a Branch-and-Bound approach. An alternative approach, Resolution Search, was proposed by Chvátal in 1997 for solving 0-1 optimization problems, but remains little known to this day and as such has seen few practical applications. This thesis attempts to remedy this state of affairs, with partial success. Its first contribution consists in the generalization of Resolution Search to any discrete optimization problem, while introducing new definitions and concepts. Next, we tried to validate this approach by attempting to solve well-known problems efficiently with it. Although our research did not succeed in this respect, it lead us to new methods for solving the generalized assignment and uncapacitated facility location problems. After presenting these methods, this thesis concludes with a summary of our attempts at practical application of Resolution Search, along with further perspectives on this matter. / Thèse réalisée en cotutelle avec l'Université d'Avignon.
6

« Resolution Search » et problèmes d’optimisation discrète

Posta, Marius 02 1900 (has links)
Thèse réalisée en cotutelle avec l'Université d'Avignon. / Les problèmes d’optimisation discrète sont pour beaucoup difficiles à résoudre, de par leur nature combinatoire. Citons par exemple les problèmes de programmation linéaire en nombres entiers. Une approche couramment employée pour les résoudre exactement est l’approche de Séparation et Évaluation Progressive. Une approche différente appelée « Resolution Search » a été proposée par Chvátal en 1997 pour résoudre exactement des problèmes d’optimisation à variables 0-1, mais elle reste mal connue et n’a été que peu appliquée depuis. Cette thèse tente de remédier à cela, avec un succès partiel. Une première contribution consiste en la généralisation de Resolution Search à tout problème d’optimisation discrète, tout en introduisant de nouveaux concepts et définitions. Ensuite, afin de confirmer l’intérêt de cette approche, nous avons essayé de l’appliquer en pratique pour résoudre efficacement des problèmes bien connus. Bien que notre recherche n’ait pas abouti sur ce point, elle nous a amené à de nouvelles méthodes pour résoudre exactement les problèmes d’affectation généralisée et de localisation simple. Après avoir présenté ces méthodes, la thèse conclut avec un bilan et des perspectives sur l’application pratique de Resolution Search. / The combinatorial nature of discrete optimization problems often makes them diffi- cult to solve. Consider for instance integer linear programming problems, which are commonly solved using a Branch-and-Bound approach. An alternative approach, Resolution Search, was proposed by Chvátal in 1997 for solving 0-1 optimization problems, but remains little known to this day and as such has seen few practical applications. This thesis attempts to remedy this state of affairs, with partial success. Its first contribution consists in the generalization of Resolution Search to any discrete optimization problem, while introducing new definitions and concepts. Next, we tried to validate this approach by attempting to solve well-known problems efficiently with it. Although our research did not succeed in this respect, it lead us to new methods for solving the generalized assignment and uncapacitated facility location problems. After presenting these methods, this thesis concludes with a summary of our attempts at practical application of Resolution Search, along with further perspectives on this matter.

Page generated in 0.095 seconds