Spelling suggestions: "subject:"resonant ultrasound dpectroscopy (RUS)"" "subject:"resonant ultrasound espectroscopy (RUS)""
1 |
Elastic Properties of Bulk-metallic Glasses Studied by Resonant Ultrasound SpectroscopyZhang, Zhiying 01 August 2008 (has links)
The elastic properties of a solid are of considerable interest to both science and technology. Not only do they contain fundamental information about the nature of the inter-atomic bonding in the material, but they also determine the mechanical behavior of solids. In the past few years, considerable effort has been devoted to the study of elastic properties of bulk metallic glasses (BMGs), a relatively new class of metallic materials that display a unique combination of mechanical and physical properties. Our research has focused on Zr-based, Cu-based and Ca-based metallic glasses. Zr-based BMGs are known to have superior glass forming ability and high strength, but their ductility is too low for wide-spread practical applications. Cu-based BMGs recently received wide interest because of their low cost and good mechanical properties. Ca-based BMGs have low glass transition temperature Tg, around 390 K, which make them very attractive to be studied near Tg.
In this work, resonant ultrasound spectroscopy (RUS) has been applied to study the elastic properties of above mentioned BMGs from 5 K to their glass transition temperature Tg. RUS is a novel technique for determining the elastic moduli of solids, based on the measurement of the resonances of a freely vibrating body. In an RUS experiment, the mechanical resonances of a freely vibrating solid of known shape are measured, and an iteration procedure is used to “match” the measured lines with the calculated spectrum. This allows determination of all elastic constant of the solid from a single frequency scan.
Below Tg, the elastic constants of the BMGs under investigation show “normal” behavior, i.e. with increasing temperature, all moduli decrease and Poisson ratio increases. Above Tg changes in the trends occur due to structural relaxation and crystallization. We confirmed the suggested link between ductility and Poisson ratio: BMGs showing good ductility display high Poisson ratio. By increasing palladium content in Zr50Cu40-xAl10Pdx alloys, BMGs with high Poisson ratio and thus good ductility have been obtained. In addition, we developed a simple model to provide fast and good estimate of the temperature dependence of elastic constants of BMGs from room temperature measurements.
Keywords: Elastic properties; Bulk metallic glasses (BMGs); Resonant ultrasound spectroscopy (RUS); Internal friction.
|
2 |
Elastic properties of complex transition metal oxides studied by Resonant Ultrasound SpectroscopyLuan, Yanbing 01 May 2011 (has links)
The elastic properties of novel transition metal oxides have been investigated, using a powerful technique known as Resonant Ultrasound Spectroscopy (RUS). Two sets of transition metal oxides have been studied. One is the ruthenate Ca2-xSrxRuO4 series with a layered perovskite structure, a Mott transition system that connects the Mott insulator Ca2RuO4 with the unconventional superconductor Sr2RuO4. The other set contains geometrically frustrated materials, including vanadium spinels AV2O4 (A = Zn, Mn and Fe) and titanate pyrochlores A2Ti2O7 (A= Y, Tb, Yb, Ho and Dy).
The elastic response of five Ca2-xSrxRuO4 single crystals (x = 2.0, 1.9, 0.5, 0.3 and 0.2) has been measured. For 2.0 ≥ x ≥ 0.5, a dramatic softening over a wide temperature range is observed upon cooling, caused by the rotational instability of RuO6 octahedra (for x = 2.0 and 1.9) or the static rotation of the octahedra (for x = 0.5). For the Ca-rich samples (x = 0.3 and 0.2), the softening occurs in a very narrow temperature range, corresponding to the structural phase transition from high-temperature-tetragonal to low-temperature-orthorhombic symmetry.
Elastic softening in ZnV2O4 is observed near the cubic-to-tetragonal structural phase transition at 50 K. The elastic response of MnV2O4 is quite unusual, displaying a softening over a wide temperature range with decreasing temperature. Upon cooling, C’ of FeV2O4 becomes so soft that it drops to almost zero around 140 K, where the cubic-to-tetragonal structural transition occurs.
For Y2Ti2O7, all three elastic constants show normal “Varshni” behavior. For spin liquid Tb2Ti2O7, all three elastic constants show a pronounced softening below 50 K, indicative of a possible Jahn-Teller, cubic-to-tetragonal transition at very low temperatures. It is also found that the application of a magnetic field suppresses the elastic softening in this compound. Another spin liquid Yb2Ti2O7 shows no elastic softening. The elastic moduli of the spin-ice compounds, Ho2Ti2O7 and Dy2Ti2O7, show a broad “dip” around 100 K, which is believed to be caused by the strong crystal field effect in those two compounds.
|
3 |
Static and time-dependent mechanical behaviour of preserved archaeological wood : Case studies of the seventeenth century warship VasaVorobyev, Alexey January 2017 (has links)
Wooden objects have been widely used in the history of humanity and play an important role in our cultural heritage. The preservation of such objects is of great importance and can be a challenging task. This thesis investigates the static and time-dependent mechanical behaviour of archaeological oak wood from the Vasa warship. Characterisation of mechanical properties is necessary for the formulation of a numerical model to design an improved support structure. The ship was impregnated with polyethylene glycol (PEG) for dimensional stabilisation. All elastic engineering constants of the Vasa oak have been identified and compared with those of recent oak by means of the static and dynamic testing. The experiments were done on samples with cubic geometry, which allowed obtaining all elastic constants from a single sample. The usage of cubic samples with orthotropic mechanical properties during compressive experiments was validated with finite-element simulations. The Young's moduli of the Vasa oak in all orthotropic directions were smaller than those for the recent oak. The shear moduli of Vasa oak was determined and verified with the resonant ultrasound spectroscopy. The time-dependent mechanical behaviour of the Vasa oak has been studied. Creep studies were performed in uniaxial compression on the cubic samples in all orthotropic directions. The samples loaded in the longitudinal direction were subjected to different stress levels. A stress level below 15% of the yield stress in the longitudinal direction did not result in non-linear creep with increasing creep rates within the time frame of the tests. The results of the studies in radial and tangential directions showed that creep was dominated by the effect of annual fluctuations in relative humidity and temperature. The weight changes based on annual fluctuations of relative humidity were measured for Vasa oak and recent oak. The Vasa oak showed higher variations due to an increased hygroscopicity which is the result of the impregnation with PEG. In conceiving a full-scale finite-element model of Vasa ship, not only the stress-strain relations of the material but also those of the structural joints are needed. Since the in-situ measurement of joints is not an option, a replica of a section of the ship hull was built and tested mechanically. The load-induced displacements were measured using 3D laser scanning which proved to have advantages to conventional point displacement measurements. The mechanical characteristics of the Vasa oak and joint information presented in this work can be used as input for a finite-element model of the Vasa ship for simulation of static and time-dependent behaviour on a larger scale. / Stötta Vasa
|
Page generated in 0.0906 seconds