• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure and properties of Vasa oak

Ljungdahl, Jonas January 2006 (has links)
The Vasa ship is not adequately supported. Measurements of the hull show that the ship deforms and rotate towards the port side. In addition, damages on the hull at support areas have been observed. The damages are due to high compressive loads. At damaged zones the support has been removed and the loads are thus transferred to adjacent support stanchions. In order to design an improved support, knowledge of the mechanical behaviour of the material is needed. In particular, radial modulus, strength and deformation mechanisms are of interest. In the present study, the mechanical behaviour of recent oak and oak from Vasa is studied. Furthermore, effects of PEG content, degradation and moisture on the properties of Vasa oak are investigated. Oak is characterized by a very abrupt change from earlywood to latewood, where the latewood is much denser than earlywood. Also present in oak are large rays in the radial direction of the wood. Small specimens were tested in compression using Digital Speckle Photography (DSP) in order to obtain strain fields of the whole specimen surface. This technique also provided data on failure mechanisms. Dynamic mechanical thermal analysis (DMTA) was performed to establish differences in moisture softening. In radial compression, modulus and strength of Vasa oak are reduced by 50% compared with recent oak. A significant change of failure mechanism is observed for Vasa oak. In recent oak, failure in radial compression is by continuous folds of rays in the earlywood followed by continued plastic collapse of the earlywood layer. In Vasa oak rays show a more brittle fracture in each earlywood region. DMTA results indicate no effect on moisture softening of Vasa oak from presence of PEG although more work is needed to confirm this. Moisture adsorption for PEG-extracted Vasa oak is not significantly higher than for recent oak below 60% RH, suggesting that the extent of degradation of Vasa oak is limited. Vasa oak containing PEG is much more hygroscopic than PEG-extracted Vasa oak already at 50%. This difference is increasing with increasing relative humidity. / QC 20101118
2

Sulfur-Related Conservation Concerns in Marine Archaeological Wood : The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the <i>Vasa</i>

Fors, Yvonne January 2008 (has links)
<p>Synchrotron-based sulfur spectroscopy reveals a common concern for marine archaeological wood from seawater: accumulation of reduced sulfur compounds in two pathways. The distribution of sulfur species in the oak wood cell structure was mapped by scanning x-ray spectro-microscopy (SXM). Organically bound sulfur was found within lignin-rich parts, identified mainly as thiols and disulfides by sulfur K-edge x-ray absorption near edge structure (XANES) spectroscopy. Particles of iron sulfides, which may form in the presence of corroding iron, appeared in wood cavities. Cores scanned by x-ray fluorescence (XRF) show that high sulfur accumulation is restricted to the surface layers for the Swedish shipwreck <i>Vasa</i>, while the distribution is rather uniform throughout the hull timbers of the <i>Mary Rose</i>, U.K. Laboratory experiments, exposing fresh pine to simulated seabed conditions, show that the organically bound sulfur develop in reactions between lignin, exposed by cellulose-degrading erosion bacteria, and hydrogen sulfide produced <i>in situ</i> by scavenging sulfate reducing bacteria. With bacteria inoculated from shipwreck samples also iron sulfides formed. The iron sulfides oxidise in high humidity, and are the probable main cause of the numerous outbreaks on the Vasa’s hull of acidic sulfate salts, which were identified by x-ray powder diffraction (XRD). The iron ions catalyse several wood-degrading oxidative processes. Multi-elemental analyses were performed by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (ESCA). The present amounts of total S remaining in the <i>Vasa</i> and the <i>Mary Rose</i> are estimated to at least 2 tonnes. After the <i>Vasa´s</i> spray treatment with polyethylene glycol solutions ceased in 1979, the continuing oxidation processes are estimated to have produced 2 tonnes of sulfuric acid in the wood. Laboratory experiments to gently neutralize acidic <i>Vasa</i> wood by ammonia gas have been conducted with promising results.</p>
3

Sulfur-Related Conservation Concerns in Marine Archaeological Wood : The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the Vasa

Fors, Yvonne January 2008 (has links)
Synchrotron-based sulfur spectroscopy reveals a common concern for marine archaeological wood from seawater: accumulation of reduced sulfur compounds in two pathways. The distribution of sulfur species in the oak wood cell structure was mapped by scanning x-ray spectro-microscopy (SXM). Organically bound sulfur was found within lignin-rich parts, identified mainly as thiols and disulfides by sulfur K-edge x-ray absorption near edge structure (XANES) spectroscopy. Particles of iron sulfides, which may form in the presence of corroding iron, appeared in wood cavities. Cores scanned by x-ray fluorescence (XRF) show that high sulfur accumulation is restricted to the surface layers for the Swedish shipwreck Vasa, while the distribution is rather uniform throughout the hull timbers of the Mary Rose, U.K. Laboratory experiments, exposing fresh pine to simulated seabed conditions, show that the organically bound sulfur develop in reactions between lignin, exposed by cellulose-degrading erosion bacteria, and hydrogen sulfide produced in situ by scavenging sulfate reducing bacteria. With bacteria inoculated from shipwreck samples also iron sulfides formed. The iron sulfides oxidise in high humidity, and are the probable main cause of the numerous outbreaks on the Vasa’s hull of acidic sulfate salts, which were identified by x-ray powder diffraction (XRD). The iron ions catalyse several wood-degrading oxidative processes. Multi-elemental analyses were performed by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (ESCA). The present amounts of total S remaining in the Vasa and the Mary Rose are estimated to at least 2 tonnes. After the Vasa´s spray treatment with polyethylene glycol solutions ceased in 1979, the continuing oxidation processes are estimated to have produced 2 tonnes of sulfuric acid in the wood. Laboratory experiments to gently neutralize acidic Vasa wood by ammonia gas have been conducted with promising results.
4

Structure and properties of Vasa oak

Ljungdahl, Jonas January 2006 (has links)
<p>The Vasa ship is not adequately supported. Measurements of the hull show that the ship deforms and rotate towards the port side. In addition, damages on the hull at support areas have been observed. The damages are due to high compressive loads. At damaged zones the support has been removed and the loads are thus transferred to adjacent support stanchions. In order to design an improved support, knowledge of the mechanical behaviour of the material is needed. In particular, radial modulus, strength and deformation mechanisms are of interest. In the present study, the mechanical behaviour of recent oak and oak from Vasa is studied. Furthermore, effects of PEG content, degradation and moisture on the properties of Vasa oak are investigated.</p><p>Oak is characterized by a very abrupt change from earlywood to latewood, where the latewood is much denser than earlywood. Also present in oak are large rays in the radial direction of the wood.</p><p>Small specimens were tested in compression using Digital Speckle Photography (DSP) in order to obtain strain fields of the whole specimen surface. This technique also provided data on failure mechanisms. Dynamic mechanical thermal analysis (DMTA) was performed to establish differences in moisture softening.</p><p>In radial compression, modulus and strength of Vasa oak are reduced by 50% compared with recent oak. A significant change of failure mechanism is observed for Vasa oak. In recent oak, failure in radial compression is by continuous folds of rays in the earlywood followed by continued plastic collapse of the earlywood layer. In Vasa oak rays show a more brittle fracture in each earlywood region. DMTA results indicate no effect on moisture softening of Vasa oak from presence of PEG although more work is needed to confirm this. Moisture adsorption for PEG-extracted Vasa oak is not significantly higher than for recent oak below 60% RH, suggesting that the extent of degradation of Vasa oak is limited. Vasa oak containing PEG is much more hygroscopic than PEG-extracted Vasa oak already at 50%. This difference is increasing with increasing relative humidity.</p>
5

Static and time-dependent mechanical behaviour of preserved archaeological wood : Case studies of the seventeenth century warship Vasa

Vorobyev, Alexey January 2017 (has links)
Wooden objects have been widely used in the history of humanity and play an important role in our cultural heritage. The preservation of such objects is of great importance and can be a challenging task. This thesis investigates the static and time-dependent mechanical behaviour of archaeological oak wood from the Vasa warship. Characterisation of mechanical properties is necessary for the formulation of a numerical model to design an improved support structure. The ship was impregnated with polyethylene glycol (PEG) for dimensional stabilisation. All elastic engineering constants of the Vasa oak have been identified and compared with those of recent oak by means of the static and dynamic testing. The experiments were done on samples with cubic geometry, which allowed obtaining all elastic constants from a single sample. The usage of cubic samples with orthotropic mechanical properties during compressive experiments was validated with finite-element simulations. The Young's moduli of the Vasa oak in all orthotropic directions were smaller than those for the recent oak. The shear moduli of Vasa oak was determined and verified with the resonant ultrasound spectroscopy. The time-dependent mechanical behaviour of the Vasa oak has been studied. Creep studies were performed in uniaxial compression on the cubic samples in all orthotropic directions. The samples loaded in the longitudinal direction were subjected to different stress levels. A stress level below 15% of the yield stress in the longitudinal direction did not result in non-linear creep with increasing creep rates within the time frame of the tests. The results of the studies in radial and tangential directions showed that creep was dominated by the effect of annual fluctuations in relative humidity and temperature. The weight changes based on annual fluctuations of relative humidity were measured for Vasa oak and recent oak. The Vasa oak showed higher variations due to an increased hygroscopicity which is the result of the impregnation with PEG. In conceiving a full-scale finite-element model of Vasa ship, not only the stress-strain relations of the material but also those of the structural joints are needed. Since the in-situ measurement of joints is not an option, a replica of a section of the ship hull was built and tested mechanically. The load-induced displacements were measured using 3D laser scanning which proved to have advantages to conventional point displacement measurements. The mechanical characteristics of the Vasa oak and joint information presented in this work can be used as input for a finite-element model of the Vasa ship for simulation of static and time-dependent behaviour on a larger scale. / Stötta Vasa

Page generated in 0.0991 seconds