Spelling suggestions: "subject:"präresonanz"" "subject:"kernresonanz""
51 |
Detection of ligand dependent Frizzled conformational changes / Nachweis von Liganden-abhängigen Frizzled KonformationsänderungenAlonso Cañizal, Maria Consuelo January 2020 (has links) (PDF)
Frizzled (FZD) are highly conserved receptors that belong to class F of the G protein-coupled receptor (GPCR) superfamily. They are involved in a great variety of processes during embryonic development, organogenesis, and adult tissue homeostasis. In particular, FZD5 is an important therapeutic target due to its involvement in several pathologies, such as tumorigenesis. Nevertheless, little is known regarding the activation of FZD receptors and the signal initiation, and their GPCR nature has been debated. In order to investigate the activation mechanism of these receptors, FRET (Förster Resonance Energy Transfer)-based biosensors for FZD5 have been developed and characterized. A cyan fluorescent protein (CFP) was fused to the C-terminus of the receptor and the specific FlAsH-binding sequence (CCPGCC) was inserted within the 2nd or the 3rd intracellular loop. Single-cell FRET experiments performed using one of these sensors, V5-mFZD5-FlAsH436-CFP, reported structural rearrangements in FZD5 upon stimulation with the endogenous ligand WNT-5A. These movements are similar to those observed in other GPCRs using the same technique, which suggests an activation mechanism for FZD reminiscent of GPCRs. Furthermore, stimulation of the FZD5 FRET-based sensor with various recombinant WNT proteins in a microplate FRET reader allowed to obtain concentration-response curves for several ligands, being possible to distinguish between full and partial agonists. This technology allowed to address the selectivity between WNTs and FZD5 using a full-length receptor in living cells. In addition, G protein FRET-based sensors revealed that WNT-5A specifically induced Gαq activation mediated by FZD5, but not Gαi activation. Other WNT proteins were also able to induce Gαq activation, but with lower efficacy than WNT-5A. In addition, a dual DAG/calcium sensor further showed that WNT-5A stimulation led to the activation of the Gαq-dependent signaling pathway mediated by FZD5, which outcome was the activation of Protein Kinase C (PKC) and the release of intracellular calcium. Altogether, these data provide evidence that the activation process of FZD5 resembles the general characteristics of class A and B GPCR activation, and this receptor also mediates the activation of the heterotrimeric Gαq protein and its downstream signaling pathway. In addition, the FZD5 receptor FRET-based sensor provides a valuable tool to characterize the pharmacological properties of WNTs and other potential ligands for this receptor. / Frizzled (FZD) sind hochkonservierte Rezeptoren welche zur Klasse F der G- Protein-gekoppelte Rezeptor Superfamilie gehören. Diese haben wichtige Funktionen in verschiedenen physiologischen Prozessen wie zum Beispiel Embryonalentwicklung, Organogenese und adulte Gewebe-homöostase. FZD5 ist aufgrund seiner Beteiligung an verschiedenen pathologischen Prozessen wie der Tumorgenese ein wichtiges therapeutisches Ziel. Jedoch ist über die Aktivierung und Signalauslösung der FZD Rezeptoren sehr wenig bekannt und deren GPCR Eigenschaften sind umstritten. Um den Aktivierungsmechanismus dieser Rezeptoren zu untersuchen, wurden FRET (Förster Resonance Energy Transfer)-basierte FZD5 Biosensoren entwickelt und charakterisiert. Ein cyan fluoreszierendes Protein (CFP) wurde an den C-Terminus des Rezeptors fusioniert und die FlAsH-bindende Sequenz (CCPGCC) wurde im 2. oder 3. intrazellulären Loop eingefügt. Einzel-zell FRET Versuche mit dem Sensor V5-mFZD5-FlAsH436-CFP haben gezeigt, dass Stimulation mit dem endogenen Ligand WNT-5A zur FZD5 Konformationsänderungen führt. Diese Konformationsänderungen sind ähnlich wie bei anderen GPCRs, was darauf hinweist, dass der FZD Aktivierungsmechanismus vergleichbar mit dem von GPCRs ist. Außerdem wurde der FZD5 FRET-basierter Sensor mit verschiedenen rekombinierten WNT Proteinen stimuliert und mit einem FRET-Platten Reader gemessen, was die Erstellung von Konzentrations - Wirkungskurven und die Unterscheidung zwischen Voll- und Partialagonisten ermöglichte. Diese Methode erlaubte es, die Selektivität zwischen WNTs und FZD5 mittels des Volllängenrezeptors in lebenden Zellen zu untersuchen. Zudem haben G-Protein FRET-basierte Sensoren gezeigt, dass WNT-5A die FZD5 vermittelte Gαq Aktivierung jedoch nicht die Gαi Aktivierung spezifisch induziert. Andere WNT Proteine können auch die Gαq Aktivierung induzieren aber mit geringerer Effizienz als WNT-5A. Ein doppelter DAG/Calcium Sensor hat zudem gezeigt, dass WNT-5A Stimulation zu einer durch FZD5 vermittelten Aktivierung der Gαq-abhängigen Signaltransduktionkaskade führt, was zur Aktivierung der Protein Kinase C (PKC) und zur Freisetzung intrazellulären Calciums führt. Zusammenfassend wurde in der vorliegenden Arbeit die Ähnlichkeit des FZD5 Rezeptors zur Klasse A und B der GPCRs bezüglich allgemeinen Eigenschaften und Aktivierung verdeutlicht. Zudem vermittelt dieser Rezeptor die Aktivierung der Gαq-abhängigen Signaltransduktionkaskade. Ein FZD5 Rezeptor FRET-basierter Sensor stellt ein wertvolles Werkzeug zur pharmakologischen Charakterisierung der WNTs und anderer potentiellen FZD5 Liganden dar.
|
52 |
Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs) / Regulierung der Signalübertragung des Parathormon 1-Rezeptors (PTH1R) durch Rezeptoraktivitäts-modifizierende Proteine (RAMPs)Nemec, Katarina January 2023 (has links) (PDF)
The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions.
Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive.
This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation.
I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors.
These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR
function and advanced drug design. / G Protein-gekoppelte Rezeptoren (GPCRs) bilden die größte und pharmakologisch wichtigste Familie von
Zelloberflächenrezeptoren, die zahlreiche (patho-)physiologische Prozesse im menschlichen Körper steuern. GPCRs
übertragen während des Rezeptoraktivierungsprozesses extrazelluläre Signale in das Zellinnere, wo durch die
extrazelluläre Stimulation Konformationsänderungen des Rezeptorkerns auslöst und die Bindung intrazellulärer
Bindungspartner – G Proteine, G Protein-gekoppelte Rezeptorkinase und Arrestine - ermöglicht. Es handelt sich
also um einen kritischen Prozess in der Signaltransduktion, der durch einige endogene Moleküle wie Ionen, Lipide
oder andere Proteine moduliert werden kann und Auswirkungen auf nachgeschaltete Signalkaskaden hat.
GPCRs bilden gewebeabhängige Oligomere mit ihren interagierenden Partnern, Rezeptor-Aktivitäts-modifizierende
Proteinen (RAMPs), ubiquitär exprimierten Membranproteinen. Bekannt ist, dass sie die Ligandenbindung, die G-
Protein-Kopplung, die nachgeschaltete Signalisierung, das Trafficking und das Recycling einiger GPCRs modulieren.
Ihre Rolle im kritischsten Prozess der Signaltransduktion - der Rezeptoraktivierung - wurde jedoch nur begrenzt
erforscht.
Anhand des physiologisch und therapeutisch wichtigen Parathormon-Rezeptors (PTH1R), einem GPCR der Klasse B,
wurden die Modulationseffekte von RAMPs auf den Prozess der Rezeptoraktivierung und ihre Folgen für die
nachgeschaltete Signalübertragung analysiert. Hierzu wurden verschiedene optische Biosensoren zur Messung der
Aktivierung des PTH1R und seiner Signalkaskade entwickelt und in verschiedenen Versuchsanordnungen
eingesetzt, mit dem Ziel einen holistischen Blick auf die Interaktion zwischen PTH1R und RAMPs und ihre
funktionellen Auswirkungen zu erhalten.
Die Interaktion zwischen PTH1R und RAMPs erwies sich als besonders ausgeprägt für RAMP2, und RAMP2 zeigte
eine spezifische allosterische Modulation der PTH1R-Konformation, sowohl im basalen als auch im Liganden-
aktivierten Zustand. Ein einzigartiger voraktivierter oder (meta-stabiler) Zustand ermöglichte eine schnellere
Rezeptoraktivierung auf Liganden-spezifische Weise. Außerdem beeinflusste RAMP2 die G Protein- und Nicht-G
Protein-vermittelte Signalübertragung indem es die PTH-vermittelte Gi3-Signalempfindlichkeit und die Kinetik der
cAMP-Akkumulation modulierte. Weiterhin erhöhte RAMP2 die Menge der β-Arrestin2-Rekrutierung an PTH1R auf
Liganden-spezifische Weise. Dies könnte mit einer erhöhten zytosolischen ERK-Menge zusammenhängen, die hat
sich von der nukleären ERK-Phosphorylierung unterscheidet. Um einen molekularen Mechanismus für die
vorgestellten Ergebnisse vorzuschlagen, wurden mehrere strukturelle Modelle entwickelt und analysiert.
Diese Arbeit liefert den Beweis, dass RAMP die GPCR-Aktivierung mit funktionellen Auswirkungen auf die zelluläre
Signalübertragung reguliert. Die Ergebnisse sollten im Zusammenhang mit zellspezifischen Koexpressionsmustern
interpretiert werden und können zur Entwicklung von fortschrittlichen Therapeutika positiv beitragen. Da GPCRs
praktisch alle Zellfunktionen koordinieren und seit jeher wichtigen Angriffspunkten für Medikamente sind, tragen
die vorgestellten Erkenntnisse zum universellen Verständnis der molekularen Mechanismen bei, die den
menschlichen Körper orchestrieren.
|
53 |
New challenges in biophotonics : laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoringLöhmannsröben, Hans-Gerd, Beck, Michael, Hildebrandt, Niko, Schmälzlin, Elmar, van Dongen, Joost T. January 2006 (has links)
Two examples of our biophotonic research utilizing nanoparticles are presented, namely laser-based fluoroimmuno analysis and in-vivo optical oxygen monitoring. Results of the work include significantly enhanced sensitivity of a homogeneous fluorescence immunoassay and markedly improved spatial resolution of oxygen gradients in root nodules of a legume species.
|
54 |
Quantum dots as acceptors in FRET-assays containing serumBeck, Michael, Hildebrandt, Niko, Löhmannsröben, Hans-Gerd January 2006 (has links)
Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and
intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive homogeneous fluoroimmunoassays (FIA). In this work we demonstrate
energy transfer from Eu<SUP>3+</SUP>-trisbipyridin (Eu-TBP) donors to CdSe-ZnS-QD acceptors in solutions with and without serum. The QDs are commercially available CdSe-ZnS core-shell particles emitting at 655 nm (QD655). The FRET system was achieved by the binding of the streptavidin conjugated donors with the biotin conjugated acceptors. After excitation of Eu-TBP and as result of the energy transfer, the luminescence of the QD655 acceptors also showed lengthened decay times like the donors. The energy transfer efficiency, as calculated from the decay times of the bound and the unbound components, amounted to 37%. The Förster-radius, estimated from the absorption and emission bands, was ca. 77 Å. The effective binding ratio, which not only depends on the ratio of binding pairs but also on unspecific binding, was obtained from the donor emission dependent on the concentration. As serum promotes unspecific binding, the overall FRET efficiency of the assay was reduced. We conclude that QDs are good substitutes for acceptors in FRET if combined with slow decay donors like Europium. The investigation of the influence of the serum provides guidance towards improving binding properties of QD assays.
|
55 |
Nuclear Magnetic Resonance in pulsed high magnetic fieldsMeier, Benno 13 December 2012 (has links) (PDF)
Höchste Magnetfelder haben sich zu einem unverzichtbaren Werkzeug der Festkörperphysik entwickelt. Sie werden insbesondere verwendet, um die elektronischen Eigenschaften von modernen Materialien zu erforschen. Da Magnetfelder oberhalb von 45 Tesla nicht mehr mit statischen (z.B. supraleitenden) Feldern zu erreichen sind, haben sich weltweit verschiedene Labore auf die Erzeugung gepulster Magnetfelder mit angestrebten Maximalwerten von 100 Tesla spezialisiert.
In der vorliegenden Arbeit werden Anwendungsmöglichkeiten der kernmagnetischen Resonanz (NMR) in gepulsten Magnetfeldern aufgezeigt. Es ist gelungen, die starke Zeitabhängigkeit der gepulsten Magnetfelder mittels NMR präzise zu vermessen. Die genaue Kenntnis des Magnetfelds nach dem Puls ermöglicht, die Zeitabhängigkeit aus den Daten zu entfernen, sodass auch eine kohärente Signal-Mittelung möglich ist. Davon ausgehend werden erstmalig Messungen der chemischen Verschiebung, der Knight Shift, der Spin-Gitter-Relaxationsrate 1/T1 und der Spin-Spin-Relaxationsrate 1/T2 diskutiert.
Schließlich werden die im Zusammenhang mit gepulsten Magnetfeldern erarbeiteten Gleichungen in vereinfachter Form zur genauen Messung und Analyse des freien Induktions-Zerfalls von 19F Kernspins in Calciumfluorid verwendet. Durch Messung des Zerfalls über sechs Größenordnungen wird eine genaue Analyse bezüglich einer neuartigen Theorie ermöglicht, welche den Zerfall basierend auf der Annahme mikroskopischen Chaos\' erklärt. Diese Theorie hat das Potenzial, zu einem tieferen Verständnis von Quantenchaos in makroskopischen Vielteilchensystemen zu führen.
|
56 |
Spin dynamics and transport in magnetic heterostructuresSchneider, Tobias 16 April 2019 (has links)
The direct integration of magnon-spintronic devices in current technologies requires the development of spin-wave sources emitting ultra-short wavelengths and low-loss spin-wave guides. In this work, possible solutions for both of these challenges are provided.
The first part of this thesis is dedicated to the nonreciprocal spin-wave emission in magnetic bilayers. Two prototype systems are theoretically investigated and corroborated by experimental results: (i) extended magnetic bilayer films and (ii) micron-sized elliptical magnetic bilayers. The nonreciprocity of the dispersion relation induced by the dynamic dipole-dipole interactions is investigated by means of micromagnetic simulations and an analytic theory. The nonreciprocal frequency shift linearly increases with the film thickness for small wave numbers. The topological emission of short-wavelength spin waves is observed in the micron-sized elliptical magnetic bilayers using scanning transmission X-ray microscopy and theoretically corroborated utilizing micromagnetic simulations.
The second part of this thesis theoretically investigates a special spin transport mechanism in ferromagnetic thin films termed spin superfluidity. The main characteristic of this macroscopic state is the power-law dependence of the dissipated spin current in contrast to the exponential damping of spin waves, enabling low-loss long-range transport. The possible existence and the stability of the superfluidic transport in ferromagnetic thin films excited
by spin-transfer torque in the presence of the intrinsic dipole-dipole interactions is reported for the first time. To provide indicators to prove the experimental realization of a spin superfluid the dependence on the excitation current is numerically analyzed. Three distinct regimes are obtained for both disabled and enabled dipole-dipole interactions, showing the generality of the investigated system. Both presented effects might open new paths for the technological application of magnonic devices in the future. / Die direkte Integration von magnon-spintronischen Bauteilen in moderne Technologien erfordert die Entwicklung von kurzwelligen Spinwellenquellen und verlustarmer Spinwellenleiter.
In dieser Arbeit werden mögliche Lösungen für diese beiden Herausforderungen vorgestellt. Der erste Teil dieser Arbeit beschäftigt sich mit der nichtreziproken Spinwellenemission in magnetischen Doppellagen. Zwei Prototypsysteme werden theoretisch untersucht und durch experimentelle Ergebnisse untermauert: (i) ausgedehnte magnetische Doppellagen und (ii) mikrometer-große elliptische Doppellagen. Durch die dynamischen Dipol-Dipol-Wechselwirkungen wird eine Nichtreziprozität der Dispersionsrelation induziert. Diese wird mittels mikromagnetischer Simulationen und einer analytischen Theorie untersucht.
Die nichtreziproke Frequenzverschiebung nimmt hierbei bei kleinen Wellenzahlen linear mit der Filmdicke zu. Die topologische Emission von Spinwellen wird in den mikrometer-großen elliptischen Doppellagen unter Verwendung von Röntgentransmissionsmikroskopie
beobachtet und theoretisch unter Verwendung mikromagnetischer Simulationen bestätigt. Im zweiten Teil dieser Arbeit wird der spezielle Spintransport in ferromagnetischen dünnen Filmen untersucht, der als Spinsuprafluidität bekannt ist. Das Hauptmerkmal dieses makroskopischen Zustands ist die Abhängigkeit des dissipierten Spinstromes von der Propagationslänge als Potenzgesetz im Gegensatz zur exponentiellen Dämpfung von Spinwellen. Die Existenz und die Stabilität des suprafluiden Transportes in dünnen ferromagnetischen Filmen, angeregt durch einen spinpolarisierten Strom, in Gegenwart der intrinsischen Dipol-Dipol-Wechselwirkungen wird erstmals beschrieben. Um Hinweise für die experimentelle Realisierung der Spinsuprafluidität zu geben, wird die Abhängigkeit des Zustandes vom Anregungsstrom numerisch analysiert. Hierbei ergeben sich drei verschiedene Bereiche für den Fall vernachlässigter als auch aktivierter Dipol-Dipol-Wechselwirkung. Dies zeigt die Allgemeinheit des untersuchten Systems. Die beiden vorgestellten Effekte könnten in Zukunft neue Wege für die technologische Anwendung magnonischer Strukturen eröffnen.
|
57 |
Nuclear Magnetic Resonance in pulsed high magnetic fieldsMeier, Benno 05 November 2012 (has links)
Höchste Magnetfelder haben sich zu einem unverzichtbaren Werkzeug der Festkörperphysik entwickelt. Sie werden insbesondere verwendet, um die elektronischen Eigenschaften von modernen Materialien zu erforschen. Da Magnetfelder oberhalb von 45 Tesla nicht mehr mit statischen (z.B. supraleitenden) Feldern zu erreichen sind, haben sich weltweit verschiedene Labore auf die Erzeugung gepulster Magnetfelder mit angestrebten Maximalwerten von 100 Tesla spezialisiert.
In der vorliegenden Arbeit werden Anwendungsmöglichkeiten der kernmagnetischen Resonanz (NMR) in gepulsten Magnetfeldern aufgezeigt. Es ist gelungen, die starke Zeitabhängigkeit der gepulsten Magnetfelder mittels NMR präzise zu vermessen. Die genaue Kenntnis des Magnetfelds nach dem Puls ermöglicht, die Zeitabhängigkeit aus den Daten zu entfernen, sodass auch eine kohärente Signal-Mittelung möglich ist. Davon ausgehend werden erstmalig Messungen der chemischen Verschiebung, der Knight Shift, der Spin-Gitter-Relaxationsrate 1/T1 und der Spin-Spin-Relaxationsrate 1/T2 diskutiert.
Schließlich werden die im Zusammenhang mit gepulsten Magnetfeldern erarbeiteten Gleichungen in vereinfachter Form zur genauen Messung und Analyse des freien Induktions-Zerfalls von 19F Kernspins in Calciumfluorid verwendet. Durch Messung des Zerfalls über sechs Größenordnungen wird eine genaue Analyse bezüglich einer neuartigen Theorie ermöglicht, welche den Zerfall basierend auf der Annahme mikroskopischen Chaos\'' erklärt. Diese Theorie hat das Potenzial, zu einem tieferen Verständnis von Quantenchaos in makroskopischen Vielteilchensystemen zu führen.
|
58 |
Thermoelectric Properties of Few-Electron Quantum Dots / Thermoelektrische Eigenschaften von QuantenpunktenScheibner, Ralf January 2007 (has links) (PDF)
This thesis presents an experimental study of the thermoelectrical properties of semiconductor quantum dots (QD). The measurements give information about the interplay between first order tunneling and macroscopic quantum tunneling transport effects in the presence of thermal gradients by the direct comparison of the thermoelectric response and the energy spectrum of the QD. The aim of the thesis is to contribute to the understanding of the charge and spin transport in few-electron quantum dots with respect to potential applications in future quantum computing devices. It also gives new insight into the field of low temperature thermoelectricity. The investigated QDs were defined electrostatically in a two dimensional electron gas (2DEG) formed with a GaAs/(Al,Ga)As heterostructure by means of metallic gate electrodes on top of the heterostructure. Negative voltages with respect to the potential of the 2DEG applied to the gate electrodes were used to deplete the electron gas below them and to form an isolated island of electron gas in the 2DEG which contains a few ten electrons. This QD was electrically connected to the 2DEG via two tunneling barriers. A special electron heating technique was used to create a temperature difference between the two connecting reservoirs across the QD. The resulting thermoelectric voltage was used to study the charge and spin transport processes with respect to the discrete energy spectrum and the magnetic properties of the QD. Such a two dimensional island usually exhibits a discrete energy spectrum, which is comparable to that of atoms. At temperatures below a few degrees Kelvin, the electrostatic charging energy of the QDs exceeds the thermal activation energy of the electrons in the leads, and the transport of electrons through the QD is dominated by electron-electron interaction effects. The measurements clarify the overall line shape of thermopower oscillations and the observed fine structure as well as additional spin effects in the thermoelectrical transport. The observations demonstrate that it is possible to control and optimize the strength and direction of the electronic heat flow on the scale of a single impurity and create spin-correlated thermoelectric transport in nanostructures, where the experimenter has a close control of the exact transport conditions. The results support the assumption that the performance of thermoelectric devices can be enhanced by the adjustment of the QD energy levels and by exploiting the properties of the spin-correlated charge transport via localized, spin-degenerate impurity states. Within this context, spin entropy has been identified as a driving force for the thermoelectric transport in the spin-correlated transport regime in addition to the kinetic contributions. Fundamental considerations, which are based on simple model assumptions, suggest that spin entropy plays an important role in the presence of charge valence fluctuations in the QD. The presented model gives an adequate starting point for future quantitative analysis of the thermoelectricity in the spin-correlated transport regime. These future studies might cover the physics in the limit of single electron QDs or the physics of more complex structures such as QD molecules as well as QD chains. In particular, it should be noted that the experimental investigations of the thermopower of few-electron QDs address questions concerning the entropy transport and entropy production with respect to single-bit information processing operations. These questions are of fundamental physical interest due to their close connection to the problem of minimal energy requirements in communication, and thus ultimately to the so called "Maxwell's demon" with respect to the second law of thermodynamics. / Diese Dissertation präsentiert eine experimentelle Studie über die thermoelektrischen Eigenschaften von Halbleiterquantenpunkten. Das thermoelektrische Verhalten der Quantenpunkte wird unter besonderer Berücksichtigung ihrer jeweiligen Energiespektren und magnetischen bzw Spin-Eigenschaften diskutiert. Die durchgeführten Messungen geben Aufschluss über das Zusammenspiel von Einzelelektronentunnelprozessen erster und höherer Ordnung unter dem Einfluss thermischer Gradienten. Somit trägt diese Dissertation zum Verständnis des Ladungs- und Spintransports in potentiellen, zukünftigen Bausteinen für die Quanteninformationsverarbeitung bei und ermöglicht neue Einblicke in das Themengebiet der Thermoelektrizität bei sehr tiefen Temperaturen. Die untersuchten Quantenpunkte wurden in einem zweidimensionalen Elektronengas (2DEG) mittels nanostrukturierter, metallischer "gates" erzeugt, die auf der Oberfläche einer GaAs/AlGaAs Heterostrukturoberfläche aufgebracht wurden. Durch das Anlegen negativer Spannungen in Bezug auf das Potential des 2DEGs, wurde das Elektronengas unter den gates verdrängt, so dass eine isolierte Insel entstand, die bis zu ca. 30 Elektronen zählte. Zwei Tunnelbarrieren dienten als elektrische Verbindung dieses Quantenpunkts zu den Zuleitungen. Unter Verwendung einer speziellen Stromheizungstechnik wurde eine Temperaturdifferenz zwischen den zwei Zuleitungsreservoirs über dem Quantenpunkt erzeugt. Die Untersuchung von Ladungs- und Spintransportprozessen erfolgte über den direkten Vergleich der resultierenden thermoelektrischen Spannung mit den jeweiligen Energiespektren der Quantenpunkte. Im Allgemeinen weist eine solche zweidimensionale Insel ein diskretes Energiespektrum auf, das vergleichbar mit dem einzelner Atome ist. Unterhalb einer Temperatur von wenigen Grad Kelvin, ist die elektrostatische Aufladungsenergie des Quantenpunkts größer als die thermische Anregungsenergie der Elektronen in den Zuleitungen. Als Folge bestimmen Elektron-Elektron-Wechselwirkungseffekte den Transport von Elektronen durch den Quantenpunkt. Die durchgeführten Messungen erklären den Verlauf der Thermokraft als Funktion des Quantenpunktpotentials einschließlich der aufgeprägten Feinstruktur sowie zusätzliche thermoelektrische Effekte, die von den Spin-Eigenschaften des Quantenpunkts hervorgerufen werden. Die Beobachtungen beweisen, dass es möglich ist Stärke und Richtung des elektronischen Wärmeflusses auf der Größenskala einzelner Verunreinigungen zu kontrollieren und gegebenenfalls zu optimieren sowie Spin-korrelierten thermoelektrischen Transport in künstlich hergestellten Nanostrukturen zu verwirklichen, welche eine gezielte Kontrolle der Transportbedingungen erlauben. Die Ergebnisse untermauern die Annahmen einer möglichen Verbesserung der Effizienz thermoelektrisch aktiver Materialien durch die Anpassung der energetischen Lage entsprechender Quantenpunktzustände und durch die Ausnutzung der thermoelektrischen Effekte im Spin-korrelierten Ladungstransport durch energetisch entartete, lokalisierte Zustände. In diesem Rahmen wurde erläutert, dass Spinentropie neben den kinetischen Beiträgen eine weitere treibende Kraft des thermoelektrischen Transports durch Quantenpunkte darstellt. Grundlegende Überlegungen, die auf einfachen Modellannahmen beruhen, lassen erwarten, dass die Beiträge der Spinentropie zum thermoelektischen Transport bei vorhandenen Fluktuationen der Anzahl der Ladungen auf dem Quantenpunkt eine signifikante Rolle spielen. Das vorgestellte Modell bietet hierzu einen geeigneten Ausgangspunkt für weitere quantitative Analysen der Thermoelektrizität im Spin-korrelierten Transportregime. Insbesondere sei darauf hingewiesen, dass die experimentelle Untersuchung der Thermokraft von Quantenpunktstrukturen, wie sie hier verwendet wurden, den Entropietransport und die Entropieerzeugung in Bezug zu Ein-Bit-Rechenoperationen setzen. Fragestellungen dieser Art sind von fundamentalem physikalischen Interesse aufgrund ihrer engen Verknüpfung mit der Frage nach dem minimalen Energieaufwand, der eine Kommunikation ermöglicht. Dieses Problem wird häufig mittels des so genannten Maxwell'schen Dämon diskutiert und hinterfragt in ihrem Ursprung den zweiten Hauptsatz der Thermodynamik.
|
59 |
Wirkstoff-Substrat-Charakterisierung und Protein-Lokalisierung mittels Raman-Streuung / Drug-Target Characterization and Protein Localization via Raman ScatteringKüstner, Bernd January 2009 (has links) (PDF)
In dieser Arbeit konnte gezeigt werden, wie verschiedene Techniken zur Verstärkung der Raman-Streuung eingesetzt werden können, um selektiv und sensitiv Wirkstoffe zu charakterisieren und Proteine zu lokalisieren. Die UV-Resonanz-Raman-Spektroskopie wurde zur selektiven Verfolgung der Wirkstoff-Substrat-Wechselwirkung zwischen einem Guanidiniocarbonyl-basierten Peptidrezeptor und seinem Substrat eingesetzt. Durch die enorme Resonanzverstärkung der Ramanstreuung konnten in einer Bindungsstudie die spektralen Änderung bei der Komplexierung des Rezeptors mit einem Tetrapeptid bei submillimolarer Konzentration in Wasser verfolgt werden. Die oberflächenverstärkte Raman-Streuung (surface-enhanced Raman scattering, SERS) wurde zur ultrasensitiven Detektion von festphasengebundenen Substanzen eingesetzt. Die selektive Verstärkung der auf dem Harz gebundenen Substanz wurde durch aggregierte Silber-Nanopartikeln auf der Oberfläche der Harzkügelchen ermöglicht. So konnte auf einem einzigen Harzkügelchen in wenigen Sekunden das SERS-Spektrum einer Substanzmenge von nur 50 fmol aufgenommen werden. In einem SERS-mikroskopischen Raster-Experiment an der Oberfläche eines einzelnen Harzpartikels konnte die hohe Reproduzierbarkeit dieser Technik demonstriert werden. Zwei neue SERS-Marker zur Detektion von Biomolekülen werden abschließend vorgestellt. Bei beiden Marker-Typen werden die Raman-Signale von selbstorganisierenden Monolagen (self-assembled monolayer, SAM) aus Raman-Markern durch Gold/Silber-Nanoschalen als SERS-Substrat verstärkt. Der erste neue SERS-Marker-Typ wurde mit einer SAM aus Raman-Markern mit zwei unterschiedlich langen hydrophilen Abstandshalter-Gruppen synthetisiert. Über das Verhältnis von kurzem zu langem Abstandshalter kann die sterische Hinderung der Bindungsstellen in der SAM zur kontrollierten Konjugation an Antikörper minimiert werden. Der zweite SERS-Marker-Typ beruht auf der Silicaverkapselung einer SAM auf den Gold/Silber-Nanoschalen. Die silicaverkapselten SERS-Marker konnten nach der Oberflächenfunktionalisierung mit Amino-Gruppen über heterobifunktionelle Verknüpfungsreagenzien an Antikörper gekoppelt werden. Beide SERS-Marker wurden zur immunhistochemischen Lokalisierung des prostataspezifischen Antigens in Prostatagewebeschnitten eingesetzt. / Different Raman techniques have been employed for the selective and sensitive characterization of drug-substrate interactions and for the selective localization of proteins. UV resonance Raman spectroscopy was used to monitor selectively the drug-target interaction between a guanidiniocarbonyl-based peptide receptor and its substrate. Due to the enormous resonance enhancement of the Raman scattering the spectral changes upon complexation of the receptor with a tetrapeptide could be characterized in a binding study at a submillimolar concentration in water. Surface-enhanced Raman scattering (SERS) was employed for the ultra-sensitive detection of solid-phase bound substances. The selective enhancement of the solid-phase bound substance was realized with help of aggregated silver nanoparticles on the surface of the solid support. It was possible to detect a total amount of only approx. 50 fmole of the substance on a single resin bead. The high reproducibility of this technique was demonstrated in a SERS mapping experiment. Two approaches to new SERS labels for the detection of biomolecules are presented. In both types of labels the signal is generated from self-assembled monolayers (SAM) of Raman labels on gold/silver nanoshells as the SERS substrate. The first new type of SERS labels was synthesized with a SAM of Raman labels containing hydrophilic spacer groups with different lengths. The stoichiometric ratio between the short and the long spacer allows a minimization of the sterical hinderance of the reactive groups in the SAM for a controlled conjugation to antibodies. The second type of SERS labels includes the silica-encapsulation of a SAM on gold/silver nanoshells. The surface of the silica-encapsulated SERS labels were aminofunctionalized and conjugated to antibodies via heterobifunctional crosslinkers. With both types of SERS labels the prostate-specific antigen as a target protein was localized in prostate tissue sections.
|
60 |
Spezifische Markierungsverfahren von Rezeptoren mit kleinen Fluorophoren zur Analyse der Rezeptoraktivierung mittels FRET / Specific labelling techniques with small fluorophores for visualzing ligandselective conformations on receptors with FRETZürn, Alexander January 2009 (has links) (PDF)
Es gibt viele Hinweise, dass G-Protein-gekoppelte Rezeptoren bei ihrer Aktivierung durch einen Agonisten ligandenselektive Konformationen eingehen. Ein tatsächlichen Beleg hierfür konnte bisher in lebenden Zellen noch nicht erbracht werden. Zu diesem Zweck wurde in dieser Arbeit ein Fluoreszenz-Resonanz-Energie-Transfer (FRET)-basierter Ansatz gewählt, um ligandenselektive Konformationen in der dritten intrazellulären Schleife des α2a-adrenergen Rezeptors (α2a-AR) in lebenden Zellen darzustellen. Dazu wurden Rezeptorsensoren erstellt, welche jeweils ein CFP am Ende des C-Terminus trugen und in der dritten intrazellulären Schleife an verschiedenen Stellen mit einem Tetracysteinmotiv versehen wurden. Drei Konstrukte wurden verglichen, die das Tetracysteinmotiv N-terminal in der Nähe der Transmembrandomäne V (I3-N), in der Mitte der dritten intrazellulären Schleife (I3-M) beziehungsweise C-terminal in der Nähe der Transmembrandomäne VI (I3-C) trugen. Die drei Rezeptorsensoren unterschieden sich hinsichtlich ihrer Ligandenbindung sowie ihrer G-Proteinaktivierung nicht vom Wildtyp α2a-AR. Durch das Tetracysteinmotiv ist es möglich, den Rezeptor spezifisch mit dem niedermolekularen Fluorophor FlAsH (fluorescein arsenical hairpin binder) zu markieren, welcher als Akzeptor für den Donor CFP in FRET-Experimenten dient. Die Änderung des FRET-Signals zwischen den beiden Fluorophoren, das durch den vollen Agonist Norepinephrin ausgelöst wurde, war bei allen drei Rezeptorsensoren vergleichbar. Der starke partielle Agonist Clonidin war ebenfalls in der Lage, in allen drei Konstrukten ein ähnliches FRET-Signal hervorzurufen. Dagegen zeigte der partielle Agonist Dopamin an dem Konstrukt I3-N ein signifikant schwächeres Signal, als an I3-C. Die schwachen partiellen Agonisten Octopamin und Norphenephrin konnten an den Konstrukten I3-N und I3-M keine Änderung des FRET-Signals bewirken, wobei an I3-C eine deutliche Signaländerung detektiert wurde. Dies legt nahe, dass die Transmembrandomäne V bei der Aktivierung des Rezeptors eine kleinere Bewegung eingeht als die Transmembrandomäne VI, und bestätigt damit ein auf Röntgenstrukturanlysen basierendes Modell der Rezeptorbewegung. Außerdem wurden die Aktivierungskinetiken für die Agonisten Norepinephrin und Dopamin verglichen. Hierbei konnte gezeigt werden, dass die durch Norepinephrin ausgelöste Bewegung an allen beobachteten Punkten gleich schnell war. Im Gegensatz dazu aktivierte Dopamin I3-C und I3-M ca. 1,5-mal langsamer, als Norepinephrin. Für das I3-N Konstrukt wurde sogar eine 3-mal langsamere Aktivierung gemessen. Diese Daten zeigen, dass unterschiedliche Agonisten in der dritten intrazellulären Schleife spezifische Konformationen auslösen können. Die Untersuchungen zur Rezeptorbewegung im ersten Teil dieser Arbeit wurde mit dem kleinen Fluorophor FlAsH in Kombination mit einer großen GFP-Variante durchgeführt. Im zweiten Teil dieser Arbeit wurde eine Methode entwickelt, bei der es möglich ist Proteine spezifisch mit beiden kleinen Fluorophoren FlAsH und ReAsH in einer lebenden Zelle zu markieren. Hierfür wurden zwei Tetracysteinmotive, CCPGCC und FLNCCPGCCMEP, gewählt, an die beide kleine Fluorophore kovalent binden. Durch Verdrängungsexperimente mit BAL konnte gezeigt werden, dass FlAsH für beide Motive eine dreifach höhere Affinität besitzt, als ReAsH. Dabei besitzt das FLNCCPGCCMEP-Motiv jedoch eine dreifach höhere Affinität zu dem jeweiligen Fluorophor besitzt als CCPGCC. Durch Ausnutzung dieser Affinitätsunterschiede konnte ein Protokoll entwickelt werden, mit dem es möglich ist, beide Motive in einer Zelle zu markieren. Dabei werden zunächst beide Motive mit ReAsH markiert. Durch anschließendes Waschen mit einer geeigneten Konzentration von BAL wird das ReAsH ausschließlich von der CCPGCC-Sequenz verdrängt, wohingegen die FLNCCPGCCMEP-Sequenz mit ReAsH markiert bleibt. Die nun unbesetzte CCPGCC-Sequenz kann dann anschließend mit FlAsH markiert werden, ohne dabei die Bindung des ReAsH an die FLNCCPGCCMEP-Sequenz zu beeinflussen. Um die Funktionalität dieses Protokolls zu überprüfen, sollten zwei verschiedene Proteine mit unterschiedlicher subzellulärer Lokalisation in einer lebenden Zelle spezifisch mit jeweils einem kleinen Fluorophor markiert werden. Hierzu wurden ein PTH-Rezeptor, in dem im C-Terminus die FLNCCPGCCMEP-Sequenz eingebracht wurde, mit ReAsH und ein β-Arrestin-2, dem die CCPGCC-Sequenz eingebracht wurde, in Zellen co-exprimiert und gemäß dem Protokoll mit FlAsH und ReAsH markiert. Beide Proteine konnten spezifisch markiert werden, wobei der mit ReAsH markierte PTH-Rezeptor eine deutliche Lokalisation in der Zellmembran zeigte. Durch sequentielle Exzitation konnte in der gleichen Zelle das zytosolisch lokalisierte, mit FlAsH markierte β-Arrestin-2 detektiert werden. Wurden die so markierten Zellen mir 1 µM PTH stimuliert, wurde das FlAsH-markierte β-Arrestin-2 an die Zellmembran rekrutiert. Somit konnte durch die Entwicklung dieses Protokolls eine duale spezifische Markierung von Proteinen mit zwei kleinen Fluorophoren zu innerhalb einer Zelle erreicht werden. / Several lines of evidence suggest that G-protein-coupled receptors can adopt different active conformations, but their direct demonstration in intact cells is still missing. Using a fluorescence resonance energy transfer (FRET)-based approach we studied conformational changes in 2A-adrenergic receptors (2A-AR) in intact cells. The receptors were C-terminally labeled with cyan fluorescent protein (CFP) and with fluorescein arsenical hairpin binder (FlAsH) bound at a tetracysteine-motif at different sites in the third intracellular loop: N-terminally close to transmembrane domain V (I3-N), in the middle of the loop (I3-M), or C-terminally close to transmembrane domain VI (I3-C). All constructs retained normal ligand binding and signaling properties compared to the wildtype-2A-AR. Changes in FRET between the labels were determined in intact cells in response to different agonists. The full agonist norepinephrine evoked similar FRET-changes for all three constructs. The strong partial agonist clonidine induced partial FRET-changes for all constructs. The partial agonist dopamine envoked a significantly weaker FRET-signal in I3-N than in I3-C. However, the weak partial agonists octopamine and norphenephrine only induced detectable changes in the construct I3-C, but no change in I3-M and I3-N. This agrees with X-ray receptor structures indicating larger agonist-induced movements at the cytoplasmic ends of transmembrane domain VI than V and suggests that partial agonism is linked to distinct conformational changes within a G-protein-coupled receptor. The kinetics of the receptor activation was compared between dopamine and norepinephrine. The kinetics for norepinephrine were similar for all three constructs. Dopamine-induced FRET-signals were ≈1.5-fold slower than those for norepinephrine in I3-C and I3-M, but >3-fold slower in I3-N. Our data indicate that the different ligands induced conformational changes in the receptor that were sensed differently in different positions of the third intracellular loop. Specific labeling of proteins in living cells with two different molecular probes would be an important further development for multiparameter imaging of cellular functions. Here we report a strategy to selectively label two different proteins in living cells with two different fluorophores, FlAsH and ReAsH. Recently improved tetracysteine binding motifs have been described to selectively bind FlAsH or ReAsH. We compared the six amino acid motif CCPGCC and the twelve amino acid motif FLNCCPGCCMEP with respect to their affinity for FlAsH and ReAsH. For both fluorophores, we observed a 3-fold higher affinity for the FLNCCPGCCMEP motif compared to CCPGCC, when washed off with BAL (british anit lewisite; 2,3-Dimercaptopropanol). For both target sequences, FlAsH showed more stable interactions than ReAsH. Based on these observations, we developed a protocol to demonstrate selective labeling of different proteins in the same cell. We used two target proteins that are localized in different cellular compartments. As model proteins we chose a plasmamembrane localized G protein-coupled receptor for PTH (PTH-receptor) which was C-terminally modified with the FLNCCPGCCMEP motif for labeling with ReAsH, and the cytosolic -arrestin-2 protein which was C-terminally modified with the CCPGCC motif for labeling with FlAsH. Both proteins were specifically labelled with the respective Fluorophores and -arrestin-2 will translocate to the plasmamembrane upon agonist stimulation of the PTH receptor. Taken together our data demonstrate that FlAsH and ReAsH can be used for orthogonal labeling to different binding motifs fused to different target proteins in living cells.
|
Page generated in 0.0409 seconds