• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Schaltungskonzepte für die Nanoelektronik mit Resonanz-Tunnelbauelementen /

Pacha, Christian. January 2001 (has links) (PDF)
Univ., Diss.--Dortmund. / Nebent.: Schaltungstechnik für die Nanoelektronik.
2

Diluted magnetic semiconductor resonant tunneling structures for spin manipulation

Slobodskyy, Anatoliy. Unknown Date (has links) (PDF)
University, Diss., 2005--Würzburg.
3

Resonanz-Tunneldioden und Heterobipolartransistoren in dynamischen Digitalschaltungen hoher Funktionsdichte

Glösekötter, Peter. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Dortmund.
4

Diluted magnetic semiconductor Resonant Tunneling Structures for spin manipulation / Verdünnt magnetische Halbleiter Resonante Tunnel-Strukturen für Spin Manipulation

Slobodskyy, Anatoliy January 2005 (has links) (PDF)
In this work we investigate magnetic resonant tunneling diode (RTD) structures for spin manipulation. All-II-VI semiconductor RTD structures based on [Zn,Be]Se are grown by molecular beam epitaxy. We observe a strong, magnetic field induced, splitting of the resonance peaks in the I-V characteristics of RTDs with [Zn,Mn]Se diluted magnetic semiconductors (DMS) quantum well. The splitting saturates at high fields and has strong temperature dependence. A phonon replica of the resonance is also observed and has similar behaviour to the peak. We develop a model based on the giant Zeeman splitting of the spin levels in the DMS quantum well in order to explain the magnetic field induced behaviour of the resonance. / In dieser Arbeit werden magnetische resonante Tunneldioden (RTD) hinsichtlich ihrer Eignung zur Spin-Manipulation untersucht. [Zn, Be]Se basierende II-VI RTD-Strukturen wurden mittels Molekularstrahlepitaxie gewachsen. Man beobachtet eine starke, vom Magnetfeld induzierte Aufspaltung der Resonanz in der U-I Kennlinie derjenigen RTDs, die über einen Quantentrog aus [Zn, Mn]Se verdünnt magnetischen Halbleiter (DMS) verfügen. Diese Aufspaltung hat eine starke Temperaturabhängigkeit und erreicht bei hohen Feldern eine Sättigung. Eine Phononen-Replika der Resonanz wird ebenfalls beobachtet und hat ähnliche Eigenschaften wie die Resonanz selbst. Es wird ein Modell entwickelt, welches auf der Giant-Zeeman-Aufspaltung der Spin-Aufgespalteten Niveaus des DMS-Quantentrogs basiert, um das magnetfeldabhängige Verhalten der Resonanz zu erklären.
5

Elektrooptische Transporteigenschaften und stochastisch aktivierte Prozesse Resonanter Tunneldioden / Electro-optical and transport properties and stochastically activated processes of resonant tunneling diodes

Hartmann, Fabian January 2012 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden elektrooptische Transporteigenschaften und stochastisch aktivierte Prozesse Resonanter Tunneldioden (RTDs) bei Raumtemperatur untersucht. Die RTDs wurden auf dem III-V Halbleitermaterialsystem AlGaAs/GaAs durch Molekularstrahlepitaxie, Elektronenstrahllithographie und trockenchemischen Ätztechniken hergestellt. Im Bereich des negativen differentiellen Leitwerts konnte bistabi-les Schalten und hierbei stochastisch aktivierte Dynamik nichtlinearer Systeme untersucht werden. Die Flächenabhängigkeit der Ätzrate konnte ausgenutzt werden, um RTDs mit einem Stamm und zwei Transportästen zu realisieren, welche hinsichtlich ihrer optischen und elektrischen Eigenschaften untersucht wurden. Im ersten experimentellen Abschnitt 3.1 werden die elektrischen Transporteigenschaften Resonanter Tunneldioden bei Raum-temperatur und die Flächenabhängigkeit des kohärenten und nicht-kohärenten Elektronen-transports analysiert. Die Realisierung universeller logischer Gatter (NOR und NAND) und deren Rekonfigurierbarkeit durch einen externen Kontrollparameter wird in Abschnitt 3.2 gezeigt. In Abschnitt 3.3 wird die Lichtsensitivität Resonanter Tunneldioden als Photode-tektoren für den sichtbaren Wellenlängenbereich und in Abschnitt 3.4 für die Telekommu-nikationswellenlänge bei λ = 1,3 µm demonstriert. / In this thesis, electro-optical transport properties and stochastically-activated processes of resonant tunneling diodes (RTDs) were investigated at room temperature. The RTDs were prepared on the basis of AlGaAs/GaAs heterostructures by molecular beam epitaxy, elec-tron beam lithography and dry chemical etching techniques. In the region of negative dif-ferential conductance (NDC) bistable RTD switching was achieved by exploiting the load line effect in combination with stochastically-activated dynamics of nonlinear systems. The surface dependence of the etching rate was exploited in order to realize RTDs with a stem and two transport branches, which were studied with respect to their optical and electrical properties. In the first section of the experimental part, electrical transport properties of resonant tunneling diodes at room temperature and the area dependence of the coherent and non-coherent electron transport properties are described. The realization of universal logic gates (NAND and NOR) and their reconfigurability by external control parameters is then demonstrated in Section 3.2. The light sensitivity of resonant tunneling diode photo-detectors was studied for the visible wavelength range and for the telecommunication wavelength at λ = 1.3 µm, in Section 3.3, and 3.4, respectively.
6

Optoelektronische Transportspektroskopie an Resonanztunneldioden-Fotodetektoren / Optoelectronic Transport Spectroscopy on Resonant Tunneling Diode Photodetectors

Pfenning, Andreas Theo January 2018 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit optoelektronischer Transportspektroskopie verschiedener Resonanztunneldioden (RTDs). Die Arbeit ist thematisch in zwei Schwerpunktee untergliedert. Im ersten Schwerpunkt werden anhand GaAs-basierter RTD-Fotosensoren für den Telekommunikationswellenlängenbereich um 1,3 µm die Akkumulationsdynamiken photogenerierter Minoritätsladungsträger und deren Wirkung auf den RTD-Tunnelstrom untersucht. Im zweiten Schwerpunkt werden GaSb-basierte Al(As)Sb/GaSb-Doppelbarrieren-Quantentrog-RTDs in Hinblick auf ihren Raumtemperaturbetrieb entwickelt und erforscht. Diese legen den Grundstein für die spätere Realisation von RTD-Fotodetektoren im mittleren infraroten (MIR) Spektralbereich. Im Folgenden ist eine kurze inhaltliche Zusammenfassung der einzelnen Kapitel gegeben. Kapitel 1 leitet vor dem Hintergrund eines stark steigenden Bedarfs an verlässlichen und sensitiven Fotodetektoren für Telekommunikationsanwendungen sowie für die optische Molekül- und Gasspektroskopie in das übergeordnete Thema der RTD-Fotodetektoren ein. Kapitel 2 erläutert ausgewählte physikalische und technische Grundlagen zu RTD-Fotodetektoren. Ausgehend von einem kurzem Überblick zu RTDs, werden aktuelle Anwendungsgebiete aufgezeigt und die physikalischen Grundlagen elektrischen Transports in RTDs diskutiert. Anschließend werden Grundlagen, Definitionen und charakteristische Kenngrößen optischer Detektoren und Sensoren definiert. Abschließend werden die physikalischen Grundlagen zum Fotostrom in RTDs beschrieben. In Kapitel 3 RTD-Fotosensor zur Lichtdetektion bei 1,3 µm werden AlGaAs/GaAs-Doppelbarrieren-Quantentrog-Resonanztunneldioden (DBQW-RTDs) mit gitterangepasster, quaternärer GaInNAs-Absorptionsschicht als Raumtemperatur-Fotodetektoren für den nahen infraroten (NIR) Spektralbereich bei der Telekommunikationswellenlänge von λ=1,3 µm untersucht. RTDs sind photosensitive Halbleiterbauteile, die innerhalb der vergangenen Jahre aufgrund ihrer hohen Fotosensitivität und Fähigkeit selbst einzelne Photonen zu detektieren, ein beachtliches Interesse geweckt haben. Die RTD-Fotosensitivität basiert auf einer Coulomb-Wechselwirkung photogenerierter und akkumulierter Ladungsträger. Diese verändern das lokale elektrostatische Potential und steuern so einen empfindlichen Resonanztunnelstrom. Die Kenntnis der zugrundeliegenden physikalischen Parameter und deren Spannungsabhängigkeit ist essentiell, um optimale Arbeitspunkte und Bauelementdesigns zu identifizieren. Unterkapitel 3.1 gibt einen Überblick über das Probendesign der untersuchten RTD-Fotodetektoren, deren Fabrikationsprozess sowie eine Erläuterung des Fotodetektionsmechanismus. Über Tieftemperatur-Elektrolumineszenz-Spektroskopie wird die effektive RTD-Quantentrog-Breite zu d_DBQW≃3,4 nm bestimmt. Die Quantisierungsenergien der Elektron- und Schwerloch-Grundzustände ergeben sich zu E_Γ1≈144 meV und E_hh1≈39 meV. Abschließend wird der in der Arbeit verwendeten Messaufbau skizziert. In Unterkapitel 3.2 werden die physikalischen Parameter, die die RTD-Fotosensitivität bestimmen, auf ihre Spannungsabhängigkeit untersucht. Die Fotostrom-Spannungs-Kennlinie des RTD-Fotodetektors ist nichtlinear und über drei spannungsabhängige Parametern gegeben: der RTD-Quanteneffizienz η(V), der mittleren Lebensdauer photogenerierter und akkumulierter Minoritätsladungsträger (Löcher) τ(V) und der RTD-I(V)-Kennlinie im Dunkeln I_dark (V). Die RTD Quanteneffizienz η(V) kann über eine Gaußsche-Fehlerfunktion modelliert werden, welche beschreibt, dass Lochakkumulation erst nach Überschreiten einer Schwellspannung stattfindet. Die mittlere Lebensdauer τ(V) fällt exponentiell mit zunehmender Spannung V ab. Über einen Vergleich mit thermisch limitierten Lebensdauern in Quantentrögen können Leitungsband- und Valenzband-Offset zu Q_C \≈0,55 und Q_V≈0,45 abgeschätzt werden. Basierend auf diesen Ergebnissen wird ein Modell für die Fotostrom-Spannungs-Kennlinie erstellt, das eine elementare Grundlage für die Charakterisierung von RTD-Photodetektoren bildet. In Unterkapitel 3.3 werden die physikalischen Parameter, die die RTD-Fotosensitivität beschränken, detailliert auf ihre Abhängigkeit gegenüber der einfallenden Lichtleistung untersucht. Nur für kleine Lichtleistungen wird eine konstante Sensitivität von S_I=5,82×〖10〗^3 A W-1 beobachtet, was einem Multiplikationsfaktor von M=3,30×〖10〗^5 entspricht. Für steigende Lichtleistungen fällt die Sensitivität um mehrere Größenordnungen ab. Die abfallende, nichtkonstante Sensitivität ist maßgeblich einer Reduktion der mittleren Lebensdauer τ zuzuschreiben, die mit steigender Lochpopulation exponentiell abfällt. In Kombination mit den Ergebnissen aus Unterkapitel 3.2 wird ein Modell der RTD-Fotosensitivität vorgestellt, das die Grundlage einer Charakterisierung von RTD-Fotodetektoren bildet. Die Ergebnisse können genutzt werden, um die kritische Lichtleistung zu bestimmen, bis zu der der RTD-Fotodetektor mit konstanter Sensitivität betrieben werden kann, oder um den idealen Arbeitspunkt für eine minimale rauschäquivalente Leistung (NEP) zu identifizieren. Dieser liegt für eine durch theoretisches Schrotrauschen limitierte RTD bei einem Wert von NEP=1,41×〖10〗^(-16) W Hz-1/2 bei V=1,5 V. In Kapitel 4 GaSb-basierte Doppelbarrieren-RTDs werden unterschiedliche Al(As)Sb/GaSb-DBQW-RTDs auf ihre elektrische Transporteigenschaften untersucht und erstmalig resonantes Tunneln von Elektronen bei Raumtemperatur in solchen Resonanztunnelstrukturen demonstriert. Unterkapitel 4.1 beschreibt den Wachstums- und der Fabrikationsprozess der untersuchten AlAsSb/GaSb-DBQW-RTDs. In Unterkapitel 4.2 wird Elektronentransport durch eine AlSb/GaSb-DBQW-Resonanztunnelstruktur untersucht. Bei einer Temperatur von T=4,2 K konnte resonantes Tunneln mit bisher unerreicht hohen Resonanz-zu-Talstrom-Verhältnisse von PVCR=20,4 beobachtet werden. Dies wird auf die exzellente Qualität des Halbleiterkristallwachstums und des Fabrikationsprozesses zurückgeführt. Resonantes Tunneln bei Raumtemperatur konnte hingegen nicht beobachtet werden. Dies wird einer Besonderheit des Halbleiters GaSb zugeschrieben, welche dafür sorgt, dass bei Raumtemperatur die Mehrheit der Elektronen Zustände am L-Punkt anstelle des Γ Punktes besetzt. Resonantes Tunneln über den klassischen Γ Γ Γ-Tunnelpfad ist so unterbunden. In Unterkapitel 4.3 werden die elektrischen Transporteigenschaften von AlAsSb/GaSb DBQW RTDs mit pseudomorph gewachsenen ternären Vorquantentopfemittern untersucht. Der primäre Zweck der Vorquantentopfstrukturen liegt in der Erhöhung der Energieseparation zwischen Γ- und L-Punkt. So kann Elektronentransport über L- Kanäle unterdrückt und Elektronenzustände am Γ-Punkt wiederbevölkert werden. Zudem ist bei genügend tiefen Vorquantentopfstrukturen aufgrund von Quantisierungseffekten eine Verbesserung der RTD-Transporteigenschaften möglich. Strukturen ohne Vorquantentopf-Emitter zeigen ein Tieftemperatur- (T=77 K) Resonanz-zu-Talstrom-Verhältnis von PVCR=8,2, während bei Raumtemperatur kein resonantes Tunneln beobachtet werden kann. Die Integration von Ga0,84In0,16Sb- beziehungsweise GaAs0,05Sb0,95-Vorquantentopfstrukturen führt zu resonantem Tunneln bei Raumtemperatur mit Resonanz-zu-Talstrom-Verhältnissen von PVCR=1,45 und 1,36. In Unterkapitel 4.4 wird die Abhängigkeit der elektrischen Transporteigenschaften von AlAsSb/GaSb RTDs vom As-Stoffmengenanteil des GaAsSb-Emitter-Vorquantentopfs und der AlAsSb-Tunnelbarriere untersucht. Eine Erhöhung der As-Stoffmengenkonzentration führt zu einem erhöhten Raumtemperatur-PVCR mit Werten von bis zu 2,36 bei gleichzeitig reduziertem Tieftemperatur-PVCR. Das reduzierte Tieftemperatur-Transportvermögen wird auf eine mit steigendem As-Stoffmengenanteil zunehmend degradierende Kristallqualität zurückgeführt. In Kapitel 5 AlAsSb/GaSb-RTD-Fotosensoren zur MIR-Lichtdetektion werden erstmalig RTD-Fotodetektoren für den MIR-Spektralbereich vorgestellt und auf ihre optoelektronischen Transporteigenschaften hin untersucht. Zudem wird erstmalig ein p-dotierter RTD-Fotodetektor demonstriert. In Unterkapitel 5.1 wird das Probendesign GaSb-basierter RTD-Fotodetektoren für den mittleren infraroten Spektralbereich vorgestellt. Im Speziellen werden Strukturen mit umgekehrter Ladungsträgerpolarität (p- statt n-Dotierung, Löcher als Majoritätsladungsträger) vorgestellt. In Unterkapitel 5.2 werden die optischen Eigenschaften der gitterangepassten quaternären GaInAsSb-Absorptionsschicht mittels Fourier-Transformations-Infrarot-Spektroskopie untersucht. Über das Photolumineszenz-Spektrum wird die Bandlückenenergie zu E_Gap≅(447±5) meV bestimmt. Das entspricht einer Grenzwellenlänge von λ_G≅(2,77±0,04) µm. Aus dem niederenergetischen monoexponentiellem Abfall der Linienform wird eine Urbach-Energie von E_U=10 meV bestimmt. Der hochenergetische Abfall folgt der Boltzmann-Verteilungsfunktion mit einem Abfall von k_B T=25 meV. In Unterkapitel 5.3 werden die elektrischen Transporteigenschaften der RTD-Fotodetektoren untersucht und mit denen einer n-dotierten Referenzprobe verglichen. Erstmalig wird resonantes Tunneln von Löchern in AlAsSb/GaSb-DBQW-RTDs bei Raumtemperatur demonstriert. Dabei ist PVCR=1,58. Bei T=4,2 K zeigen resonantes Loch- und Elektrontunneln vergleichbare Kenngrößen mit PVCR=10,1 und PVCR=11,4. Die symmetrische I(V)-Kennlinie der p-dotierten RTD-Fotodetektoren deutet auf eine geringe Valenzbanddiskontinuität zwischen GaSb und der GaInAsSb-Absorptionsschicht hin. Zudem sind die p-dotierten RTDs besonders geeignet für eine spätere Integration mit Typ-II-Übergittern. In Unterkapitel 5.4 werden die optoelektronischen Transporteigenschaften p-dotierter RTD-Fotodetektoren untersucht. Das vorgestellte neuartige RTD-Fotodetektorkonzept, welches auf resonanten Lochtransport als Majoritätsladungsträger setzt, bietet speziell im für den MIR-Spektralbereich verwendeten GaSb-Materialsystem Vorteile, lässt sich aber auch auf das InP- oder GaAs- Materialsystem übertragen. Die untersuchten p-dotierten Fotodetektoren zeigen eine ausgeprägte Fotosensitivität im MIR-Spektralbereich. Fotostromuntersuchungen werden für optische Anregung mittels eines Halbleiterlasers der Wellenlänge λ=2,61 µm durchgeführt. Bei dieser Wellenlänge liegen fundamentale Absorptionslinien atmosphärischen Wasserdampfs. Die Fotostrom-Spannungs-Charakteristik bestätigt, dass die Fotosensitivität auf einer Modulation des resonanten Lochstroms über Coulomb-Wechselwirkung akkumulierter photogenerierter Minoritätsladungsträger (Elektronen) beruht. Es werden Sensitivitäten von S_I=0,13 A W-1 ermittelt. Durch eine verbesserte RTD-Quanteneffizienz aufgrund eines optimierten Dotierprofils der Absorptionsschicht lässt sich die Sensitivität auf S_I=2,71 A W-1 erhöhen, was einem Multiplikationsfaktor von in etwa M\≈8,6 entspricht. Gleichzeitig wird jedoch der RTD-Hebelfaktor verringert, sodass n_(RTD p2)=0,42⋅n_(RTD p1). Erstmalig wurde damit erfolgreich Gas-Absorptionsspektroskopie anhand von H2O-Dampf mittels MIR-RTD-Fotodetektor an drei beieinanderliegenden Absorptionslinien demonstriert. / The present thesis addresses the optoelectronic transport spectroscopy of different resonant tunneling diodes (RTDs). The thesis comprises two main topics. Firstly, the accumulation dynamics of photogenerated minority charge carriers and their impact on the RTD tunneling current is investigated for GaAs based RTD photosensors for the telecommunication wavelength region at 1.3 µm. Secondly, Al(As)Sb/GaSb double barrier quantum well RTDs are proposed and investigated with regard to their room temperature functionality. These works finally lead to the realization of RTD photodetectors in the mid infrared (MIR) spectral region. A brief summary of the content of the individual chapters is given below. Chapter 1 introduces the topic of RTD photodetectors in the context of a rapidly increasing demand for reliable and sensitive photodetectors for telecommunication applications as well as for optical molecular and gas spectroscopy. Chapter 2 explains some selected physical and technological basics of RTD photodetectors. Starting from a short overview depicting the development of RTDs, current areas of application are presented, and a concise introduction into electronic transport of RTDs is given. Subsequently, basic principles, definitions and characteristic parameters of optical detectors and sensors are defined. Finally, the physical fundamentals of light-induced effects on electronic transport in RTDs are described. In Chapter 3 an investigation on AlGaAs/GaAs double barrier quantum well resonant tunneling diodes (DBQW-RTDs) with a lattice-matched quaternary absorption layer as room temperature photodetectors for the near-infrared (NIR) spectral region at the telecommunication wavelength of λ=1.3 µm is presented. RTDs are photosensitive semiconductor devices that have inspired considerable interest in recent years due to their remarkable photosensitivity and ability to detect even individual photons. The RTD photosensitivity is based on Coulomb-interaction of photogenerated and accumulated charge carriers. These modulate the local electrostatic potential, and thus control a resonant tunneling current. Knowledge of the underlying physical parameters and their voltage dependence is essential to identify optimal operating points and device-design. In Subchapter 3.1 an overview of the sample design of the investigated RTD photodetectors, their fabrication process and a description of the photodetection mechanism is given. Low-temperature electroluminescence spectroscopy is used to determine the effective RTD quantum well width to d_DBQW⋍3.4 nm. The quantization energies of the electron and heavy hole ground states are found to be E_Γ1≈144 meV and E_hh1≈39 meV. Finally, the experimental setup used in this work is presented. In Subchapter 3.2 the physical parameters that limit the RTD photosensitivity are investigated with regard to their voltage dependence. The photocurrent-voltage characteristics of the RTD photodetector is nonlinear and determined by three voltage-dependent parameters: the RTD quantum efficiency η(V), the mean lifetime of photogenerated and accumulated minority charge carriers (holes) τ(V), and the RTD I(V)-characteristics in the dark I_dark (V). The RTD quantum efficiency η(V) can be modeled by a Gaussian error function, which describes that hole accumulation can only occur after surpassing a critical threshold voltage. The mean lifetime τ(V) decreases exponentially with increasing bias voltage V. Through a comparison with thermionically limited lifetimes in quantum wells, conduction and valence band offsets can be estimated to be Q_C≈0.55 and Q_V≈0.45, respectively. Based on these results, a model for the photocurrent-voltage characteristics is developed, which provides a framework for the characterization of RTD photodetectors. In Subchapter 3.3 the physical parameters limiting the RTD photosensitivity are investigated with regard to their dependence on the incident light power. Only for low light powers P<50 pW, a constant sensitivity S_I= 5.82×〖10〗^3 A W 1 is observed, which corresponds to a multiplication factor of M=3.30×〖10〗^5. For increasing light powers, the sensitivity decreases by several orders of magnitude. The decreasing, non-constant sensitivity is mainly due to a reduction of the average lifetime τ, which decreases exponentially with increasing hole population. In combination with the results from Subchapter 3.2, a model of the RTD photosensitivity is provided, which gives the basis for the complete characterization of RTD photodetectors. The results can be used to determine the critical light power up to which the RTD photodetector can be operated with constant sensitivity, or to identify the ideal operation point in terms of a minimum noise equivalent power (NEP). For an RTD limited by (theoretical) shot noise, the optimal working point is located at V=1.5 V with a noise-equivalent power of NEP=1.41×〖10〗^(-16) W Hz-1/2. In Chapter 4 different Al(As)Sb/GaSb DBQW RTDs are described via their electronic transport properties and for the first time resonant tunneling of electrons at room temperature is demonstrated in such structures. Subchapter 4.1 describes the growth and manufacturing process of the studied Al(As)Sb/GaSb-DBQW-RTDs. In Subchapter 4.2 electron transport through an AlSb/GaSb DBQW resonance tunneling structure is investigated. At low temperatures of T=4.2 K, resonant tunneling with unprecedented high peak-to-valley current ratios (PVCRs) of up to PVCR=20.4 can be observed. This is ascribed to the excellent quality of the semiconductor crystal growth and manufacturing process. Resonant tunneling at room temperature cannot be observed. This is attributed to a characteristic material property of the semiconductor GaSb, which results in the majority of electrons occupying states at the L-point instead of the Γ-point, at room temperature. Resonant tunneling via the typical Γ- Γ- Γ tunneling path is suppressed. In Subchapter 4.3 the electronic transport properties of AlAsSb/GaSb DBQW-RTDs with pseudomorphically grown ternary prewell emitters are investigated. The primary purpose of the prewell structures is to increase the energy separation between Γ- and L-point. Thus, electron transport via L-channels can be depopulated, which in turn leads to a repopulation of electron states at the Γ-point. In addition, an improvement of the RTD transport properties is possible with sufficiently deep prewell structures due to quantization effects. Structures without prewell emitters show a low-temperature (T=77 K) peak-to-valley current ratio of PVCR=8.2, while at room temperature, no resonant tunneling can be observed. The integration of Ga0.84In0.16Sb and GaAs0.05Sb0.95 prewell structures, leads to resonant tunneling at room temperature with peak-to-valley current ratios of PVCR=1.45 and 1.36, respectively. In Subchapter 4.4 the dependence of the electronic transport properties of Al(As)Sb/GaSb RTDs on the As mole fraction of the GaAsSb emitter prewell and the AlAsSb tunneling barriers is investigated. An increase in the As mole fraction leads to an increased room temperature PVCR with values of up to PVCR=2.36 with a simultaneously reduced PVCR at cryogenic temperatures. The reduced low-temperature transport properties are attributed to a decreasing semiconductor crystal quality with an increasing As concentration. In Chapter 5 RTD photodetectors for the MIR spectral region are presented for the first time and their optoelectronic transport properties are studied. In addition, a p-type doped RTD photodetector is demonstrated for the first time. In Subchapter 5.1 the sample design of the studied GaSb-based RTD photodetectors for the MIR spectral region are provided. In particular, structures with inverted charge carrier polarity (p-type instead of n-type doping, holes as majority charge carriers) are presented. In Subchapter 5.2 the optical properties of the lattice-matched quaternary GaInAsSb absorption layer are investigated by Fourier transform infrared spectroscopy. From the spectrum a bandgap energy of E_Gap≅(447±5) meV is determined. This corresponds to a cut-off wavelength of λ_G≅(2.77±0.04) µm. An Urbach energy of E_U=10 meV is extracted from the mono-exponential decline of the line shape at the low-energy side. At the high-energy side, the exponential decline follows the Boltzmann distribution function with k_B T=25 meV. In Subchapter 5.3, the electronic transport properties of the studied RTD photodetectors are presented and compared with an n-type doped reference sample. For the first time, room temperature resonant tunneling of holes in Al(As)Sb/GaSb DBQW-RTDs is demonstrated, with PVCR=1.58. At T=4.2 K, resonant tunneling of holes and electrons show comparable peak-to-valley current ratios of PVCR=10.1 and PVCR=11.4, respectively. The symmetrical I(V)-characteristics of the p-doped RTD photodetectors indicate a low valence band discontinuity between GaSb and the GaInAsSb absorption layer. In addition, they are particularly suitable for later integration with Type II superlattices. In Subchapter 5.4, the optoelectronic transport properties of p-type doped RTD photodetectors are described. The presented RTD photodetector concept, which relies on resonant tunneling transport of holes as majority charge carriers, offers advantages in particular for the GaSb material system that is used to cover the MIR spectral region. The concept of p-type doping may also be applied to the InP or GaAs material system. The examined RTD photodetectors show a pronounced photosensitivity in the MIR spectral range. Photocurrent investigations are performed under optical excitation with a semiconductor laser with wavelength λ=2.61 µm. Fundamental absorption lines of atmospheric water vapor are located at this wavelength. The photocurrent-voltage characteristics confirms that the photosensitivity is based on a modulation of the resonant hole current via the Coulomb interaction of accumulated photogenerated minority charge carriers (electrons). Sensitivities of S_I=0.13 A W-1 are determined. An improved RTD quantum efficiency due to an optimized doping profile of the absorption layer increases the sensitivity up to S_I=2.71 A W-1, which corresponds to a multiplication factor M≈8.6. At the same time, however, the RTD leverage factor is reduced so that n_(RTD p2)=0.42⋅n_(RTD p1). For the first time, gas absorption spectroscopy by an MIR RTD photodetector is demonstrated by means of H2O vapor on three adjacent absorption lines.
7

Entwurf und Realisierung neuartiger Schaltungskonzepte mit Resonanztunneldioden

Matiss, Andreas January 2008 (has links)
Zugl.: Duisburg, Essen, Univ., Diss., 2008

Page generated in 0.0481 seconds