Spelling suggestions: "subject:"desponse method"" "subject:"coresponse method""
1 |
Theoretical model for mass transport and adsorption of gases in porous solids based on the frequency response methodGrün, R., Breitkopf, C. 13 February 2020 (has links)
Detailed knowledge of mass transport and adsorption is one of the key factors in the development of
novel high-performance porous materials for a wide range of technical applications. In the course of an
optimization process, a quick conclusion on the properties of the pore system and its accessibility for
certain sample molecules is crucial. On the other hand, predictions about the pore system can save steps
in material development.
|
2 |
A coarse-mesh transport method for time-dependent reactor problemsPounders, Justin Michael 06 April 2010 (has links)
A new solution technique is derived for the time-dependent transport equation.
This approach extends the steady-state coarse-mesh transport method that is based on
global-local decompositions of large (i.e. full-core) neutron transport problems. The new
method is based on polynomial expansions of the space, angle and time variables in a
response-based formulation of the transport equation. The local problem (coarse mesh)
solutions, which are entirely decoupled from each other, are characterized by space-,
angle- and time-dependent response functions. These response functions are, in turn, used
to couple an arbitrary sequence of local problems to form the solution of a much larger
global problem. In the current work, the local problem (response function) computations
are performed using the Monte Carlo method, while the global (coupling) problem is
solved deterministically. The spatial coupling is performed by orthogonal polynomial
expansions of the partial currents on the local problem surfaces, and similarly, the timedependent
response of the system (i.e. the time-varying flux) is computed by convolving
the time-dependent surface partial currents and time-dependent volumetric sources
against pre-computed time-dependent response kernels.
|
3 |
The auditory transduction chainGollisch, Tim 07 July 2004 (has links)
Auditorische Transduktion beschreibt die Umwandlung von Schall in elektrische Signale in Rezeptorzellen. Dies geschieht durch eine Kette biophysikalischer Prozesse: mechanische Ankopplung der Schallwelle, Öffnung von mechanosensitiven Ionenkanälen in den Rezeptorzellen, Ansammlung des Membranpotentials und Auslösung von Aktionspotentialen. In dieser Arbeit wird die damit verbundene Signalverarbeitung am Beispiel der Rezeptorzellen im Ohr von Heuschrecken untersucht. Die Transduktion wird dazu als Kaskade einzelner funktioneller Module beschrieben. Es wird gezeigt, wie derartige Module aus der Beobachtung der System-Antwort, hier der Aktionspotentiale im auditorischen Nerv, mit Hilfe der Iso-Antwort-Methode charakterisiert werden können. Dabei werden im Experiment unterschiedliche akustische Reize ermittelt, die die gleiche System-Antwort liefern. In drei aufeinander aufbauenden experimentellen Untersuchungen führt dies zu folgenden Ergebnissen: 1) Für stationäre Signale wird die Feuerrate der Rezeptorzellen durch die Energie der Trommelfell-Schwingung reguliert. 2) Die auditorische Transduktion lässt sich durch eine Kaskade aus zwei linearen Filtern und zwei nicht-linearen Transformationen (LNLN-Kaskade) beschreiben. Die involvierten Prozesse agieren im sub-Millisekunden-Bereich und können mit der beschriebenen Methode - trotz der auf etwa eine Millisekunde beschränkten Präzision der Aktionspotentiale - mit einer Genauigkeit von ca. 10 Mikrosekunden vermessen werden. 3) Die Adaptation der Feuerrate enthält neben einem dominierenden rückgekoppelten Prozess, der durch die Feuerrate selbst gesteuert wird, auch eine Komponente, die direkt durch das Eingangssignal, die Schallintensität, ausgelöst wird und mechanischer Natur ist. Die Ergebnisse spiegeln die hohen Anforderungen an das zeitliche Auflösungsvermögen im Ohr wider. Die verwendete Methodik ist jedoch auch auf viele andere systemtheoretische Untersuchungen biophysikalischen Kaskaden anwendbar. / Auditory transduction describes the conversion of sound into electrical signals in receptor cells. A sequence of biophysical processes is involved: the mechanical coupling of the sound-pressure wave, the opening of mechanosensory ion channels in the receptor cells, the accumulation of membrane potential and the generation of action potentials. In this work, the signal processing in receptor cells is investigated. The ears of grasshoppers serve as a model system, and transduction is described as a cascade of functional modules. It is shown how such modules can be characterized by the iso-response method from observations of the system''s response. To this end, different acoustic stimuli are determined experimentally that trigger the same response. In three consecutive experimental investigations, this approach leads to the following results: 1) For stationary signals, the firing rate of the receptor neurons is governed by the energy of the ear-drum vibrations. 2) Auditory transduction can be described by a cascade that consists of two linear filters and two nonlinear transformations (LNLN cascade). The processes involved act on sub-millisecond time scales and can be analyzed by the described method with a resolution of around 10 microseconds - despite the limited precision of the action potentials near one millisecond. 3) Spike-frequency adaptation is governed by a feedback process, which is governed by the firing rate, but also contains a feedforward component triggered by the system''s input, the sound intensity. This component is of mechanical origin. The results reflect the high demands for temporal resolution in the ear. The applied method, however, can also be used for a large range of further system-theoretical investigations of biophyical cascades.
|
4 |
Effects of acid hydrolysis conditions on cellulose nanocrystal yield and properties: A response surface methodology studyDong, Shuping 04 June 2014 (has links)
Cellulose nanocrystals (CNCs) are frequently prepared by sulfuric acid hydrolysis of a purified cellulose starting material. CNC yields, however, are generally low, often below 20%. This study employs response surface methodology to optimize the hydrolysis conditions for maximum CNC yield. Two experimental designs were tested and compared: the central composite design (CCD) and the Box–Behnken design (BBD).
The three factors for the experimental design were acid concentration, hydrolysis temperature, and hydrolysis time. The responses quantified were CNC yield, sulfate group density, ζ-potential, z-average diameter, and Peak 1 value. The CCD proved suboptimal for this purpose because of the extreme reaction conditions at some of its corners, specifically (1,1,1) and (–1,–1, –1). Both models predicted maximum CNC yields in excess of 65% at similar sulfuric acid concentrations (~59 wt %) and hydrolysis temperatures (~65 °C).
With the BBD, the hydrolysis temperature for maximum yield lay slightly outside the design space. All three factors were statistically significant for CNC yield with the CCD, whereas with the BBD, the hydrolysis time in the range 60–150 min was statistically insignificant. With both designs, the sulfate group density was a linear function of the acid concentration and hydrolysis temperature and maximal at the highest acid concentration and hydrolysis temperature of the design space. Both designs showed the hydrolysis time to be statistically insignificant for the ζ-potential of CNCs and yielded potentially data-overfitting regression models. With the BBD, the acid concentration significantly affected both the z-average diameter and Peak 1 value of CNCs.
However, whereas the z-average diameter was more strongly affected by the hydrolysis temperature than the hydrolysis time, the Peak 1 value was more strongly affected by the hydrolysis time. The CCD did not yield a valid regression model for the Peak 1 data and a potentially data-overfitting model for the z-average diameter data. A future optimization study should use the BBD but slightly higher hydrolysis temperatures and shorter hydrolysis times than used with the BBD in this study (45–65 °C and 60–150 min, respectively). / Master of Science
|
Page generated in 0.0631 seconds