• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Restrições de manufatura aplicadas ao método de otimização topológica. / Manufacturing constraints applied to the topology optimization method.

Lippi, Tiago Naviskas 24 March 2008 (has links)
O projeto de um componente mecânico é uma atividade muito complexa, onde muitas vezes se tem restrições de projeto como peso do componente e rigidez máxima, e também restrições de manufatura, associada aos processos de fabricação disponíveis para serem utilizados. É fato conhecido que a Otimização Topológica (OT), apesar de ser um método extremamente eficiente para a obtenção de soluções ótimas, gera soluções com geometrias complexas que são ou muito caras de se fabricar ou infactíveis. A técnica de projeção foi escolhida como adequada para implementar as restrições propostas neste trabalho. Esta técnica resolve o problema posto num domínio de variáveis de projeto e projeta essa solução num domínio de pseudo-densidades, que são a resposta do problema. A relação entre os dois domínios e determinada pela função de projeção e pelo mapeamento das variáveis definidos de forma diferente para cada restrição. Neste trabalho foram implementadas restrições de manufatura para OT de modo a restringir a gama possível de soluções no problema de otimização. Como exemplo foi considerado o problema de maximização de rigidez, com restrição de volume. Todas as implementações foram realizadas em linguagem de programação C, e o algoritmo de otimização utilizado é o critério de optimalidade. Foram implementadas as seguintes restrições de manufatura com a técnica de projeção: membro mínimo, buraco mínimo, simetria, extrusão, é revolução, repetição de padrões, fundição, forjamento, e laminação. Estas restrições mostram a grande capacidade da técnica de projeção para controlar a solução do problema de otimização sem implicar num grande aumento do custo computacional. Os resultados encontrados mostram a potencialidade de utilizar restrições de manufatura na OT, porém estão longe de esgotarem o assunto, nesse tema recente que vem sendo explorado no Método de Otimização Topológica (MOT). / The design of a mechanical component is a very complex task, which includes constraints such as maximum weight and maximum stiffness, and also manufacturing constraints, associated with the manufacturing processes required at the shop floor. It is known that Topology Optimization (TO), despite of being a very effective and powerful method to obtain optimal solutions, generates solutions with complex geometries that are too much expensive to be manufactured or just can not be made. The projection scheme has been chosen as the most appropriate technique for implementing the proposed constraints. This scheme solves the proposed problem in a domain of design variables and then projects these results into a pseudo-density domain to find the solution. The relation between both domains is defined by the projection function and variable mapping defined in a different way for each constraint. In this work, manufacturing constraints for TO are implemented in a way that the possible solutions of the optimization problem are restricted. As an example, the traditional stiffness maximization problem is considered. All implementations have been done using C programming language, and the optimization algorithm applied is the optimality criteria. The following manufacturing constraints have been implemented using the projection scheme: minimal member size, minimal hole size, symmetry, extrusion, revolution, pattern repetition, casting, forging and lamination. These constraints show the large capacity of the projection scheme to control the solution for the optimization without adding a large computational cost. The results that have been found show the great power of using manufacturing constraints in the TO, however, they are far from exhausting this topic that has been recently explored in the Topology Optimization Method (TOM).
2

Restrições de manufatura aplicadas ao método de otimização topológica. / Manufacturing constraints applied to the topology optimization method.

Tiago Naviskas Lippi 24 March 2008 (has links)
O projeto de um componente mecânico é uma atividade muito complexa, onde muitas vezes se tem restrições de projeto como peso do componente e rigidez máxima, e também restrições de manufatura, associada aos processos de fabricação disponíveis para serem utilizados. É fato conhecido que a Otimização Topológica (OT), apesar de ser um método extremamente eficiente para a obtenção de soluções ótimas, gera soluções com geometrias complexas que são ou muito caras de se fabricar ou infactíveis. A técnica de projeção foi escolhida como adequada para implementar as restrições propostas neste trabalho. Esta técnica resolve o problema posto num domínio de variáveis de projeto e projeta essa solução num domínio de pseudo-densidades, que são a resposta do problema. A relação entre os dois domínios e determinada pela função de projeção e pelo mapeamento das variáveis definidos de forma diferente para cada restrição. Neste trabalho foram implementadas restrições de manufatura para OT de modo a restringir a gama possível de soluções no problema de otimização. Como exemplo foi considerado o problema de maximização de rigidez, com restrição de volume. Todas as implementações foram realizadas em linguagem de programação C, e o algoritmo de otimização utilizado é o critério de optimalidade. Foram implementadas as seguintes restrições de manufatura com a técnica de projeção: membro mínimo, buraco mínimo, simetria, extrusão, é revolução, repetição de padrões, fundição, forjamento, e laminação. Estas restrições mostram a grande capacidade da técnica de projeção para controlar a solução do problema de otimização sem implicar num grande aumento do custo computacional. Os resultados encontrados mostram a potencialidade de utilizar restrições de manufatura na OT, porém estão longe de esgotarem o assunto, nesse tema recente que vem sendo explorado no Método de Otimização Topológica (MOT). / The design of a mechanical component is a very complex task, which includes constraints such as maximum weight and maximum stiffness, and also manufacturing constraints, associated with the manufacturing processes required at the shop floor. It is known that Topology Optimization (TO), despite of being a very effective and powerful method to obtain optimal solutions, generates solutions with complex geometries that are too much expensive to be manufactured or just can not be made. The projection scheme has been chosen as the most appropriate technique for implementing the proposed constraints. This scheme solves the proposed problem in a domain of design variables and then projects these results into a pseudo-density domain to find the solution. The relation between both domains is defined by the projection function and variable mapping defined in a different way for each constraint. In this work, manufacturing constraints for TO are implemented in a way that the possible solutions of the optimization problem are restricted. As an example, the traditional stiffness maximization problem is considered. All implementations have been done using C programming language, and the optimization algorithm applied is the optimality criteria. The following manufacturing constraints have been implemented using the projection scheme: minimal member size, minimal hole size, symmetry, extrusion, revolution, pattern repetition, casting, forging and lamination. These constraints show the large capacity of the projection scheme to control the solution for the optimization without adding a large computational cost. The results that have been found show the great power of using manufacturing constraints in the TO, however, they are far from exhausting this topic that has been recently explored in the Topology Optimization Method (TOM).

Page generated in 0.0778 seconds