Spelling suggestions: "subject:"anufacturing constraints"" "subject:"amanufacturing constraints""
1 |
The Impact of Additive Manufacturing Constraints and Design Objectives on Structural Topology OptimizationDangal, Babin 01 December 2023 (has links) (PDF)
To analyze the impact of different objective functions and additive manufacturing (AM)constraints on structural topology optimization, it is necessary to perform an in-depth comparative study. This analysis should consider specific structural design factors, such as compliance, volume, or stress minimization, and assess their effects on the topology optimization for AM. In addition, the inclusion of AM constraints can have a significant influence on various aspects, including optimal part geometry, part volume, support structure volume, and structural performance. Thus, it is essential to examine and compare these factors to determine the optimal part design for AM. This study focuses on comparing topology optimization results obtained using compliance, stress, or multi-objective minimization, with and without AM constraints. The comparative analysis is conducted in the study, utilizing four structural design examples: cantilever beam, bridge-shaped structure, L-shaped beam and connecting rod. The comparison results provide insights into the effects of build orientation, AM constraints such as overhang, and different design objectives on the structural topology optimization for AM
|
2 |
Restrições de manufatura aplicadas ao método de otimização topológica. / Manufacturing constraints applied to the topology optimization method.Lippi, Tiago Naviskas 24 March 2008 (has links)
O projeto de um componente mecânico é uma atividade muito complexa, onde muitas vezes se tem restrições de projeto como peso do componente e rigidez máxima, e também restrições de manufatura, associada aos processos de fabricação disponíveis para serem utilizados. É fato conhecido que a Otimização Topológica (OT), apesar de ser um método extremamente eficiente para a obtenção de soluções ótimas, gera soluções com geometrias complexas que são ou muito caras de se fabricar ou infactíveis. A técnica de projeção foi escolhida como adequada para implementar as restrições propostas neste trabalho. Esta técnica resolve o problema posto num domínio de variáveis de projeto e projeta essa solução num domínio de pseudo-densidades, que são a resposta do problema. A relação entre os dois domínios e determinada pela função de projeção e pelo mapeamento das variáveis definidos de forma diferente para cada restrição. Neste trabalho foram implementadas restrições de manufatura para OT de modo a restringir a gama possível de soluções no problema de otimização. Como exemplo foi considerado o problema de maximização de rigidez, com restrição de volume. Todas as implementações foram realizadas em linguagem de programação C, e o algoritmo de otimização utilizado é o critério de optimalidade. Foram implementadas as seguintes restrições de manufatura com a técnica de projeção: membro mínimo, buraco mínimo, simetria, extrusão, é revolução, repetição de padrões, fundição, forjamento, e laminação. Estas restrições mostram a grande capacidade da técnica de projeção para controlar a solução do problema de otimização sem implicar num grande aumento do custo computacional. Os resultados encontrados mostram a potencialidade de utilizar restrições de manufatura na OT, porém estão longe de esgotarem o assunto, nesse tema recente que vem sendo explorado no Método de Otimização Topológica (MOT). / The design of a mechanical component is a very complex task, which includes constraints such as maximum weight and maximum stiffness, and also manufacturing constraints, associated with the manufacturing processes required at the shop floor. It is known that Topology Optimization (TO), despite of being a very effective and powerful method to obtain optimal solutions, generates solutions with complex geometries that are too much expensive to be manufactured or just can not be made. The projection scheme has been chosen as the most appropriate technique for implementing the proposed constraints. This scheme solves the proposed problem in a domain of design variables and then projects these results into a pseudo-density domain to find the solution. The relation between both domains is defined by the projection function and variable mapping defined in a different way for each constraint. In this work, manufacturing constraints for TO are implemented in a way that the possible solutions of the optimization problem are restricted. As an example, the traditional stiffness maximization problem is considered. All implementations have been done using C programming language, and the optimization algorithm applied is the optimality criteria. The following manufacturing constraints have been implemented using the projection scheme: minimal member size, minimal hole size, symmetry, extrusion, revolution, pattern repetition, casting, forging and lamination. These constraints show the large capacity of the projection scheme to control the solution for the optimization without adding a large computational cost. The results that have been found show the great power of using manufacturing constraints in the TO, however, they are far from exhausting this topic that has been recently explored in the Topology Optimization Method (TOM).
|
3 |
Restrições de manufatura aplicadas ao método de otimização topológica. / Manufacturing constraints applied to the topology optimization method.Tiago Naviskas Lippi 24 March 2008 (has links)
O projeto de um componente mecânico é uma atividade muito complexa, onde muitas vezes se tem restrições de projeto como peso do componente e rigidez máxima, e também restrições de manufatura, associada aos processos de fabricação disponíveis para serem utilizados. É fato conhecido que a Otimização Topológica (OT), apesar de ser um método extremamente eficiente para a obtenção de soluções ótimas, gera soluções com geometrias complexas que são ou muito caras de se fabricar ou infactíveis. A técnica de projeção foi escolhida como adequada para implementar as restrições propostas neste trabalho. Esta técnica resolve o problema posto num domínio de variáveis de projeto e projeta essa solução num domínio de pseudo-densidades, que são a resposta do problema. A relação entre os dois domínios e determinada pela função de projeção e pelo mapeamento das variáveis definidos de forma diferente para cada restrição. Neste trabalho foram implementadas restrições de manufatura para OT de modo a restringir a gama possível de soluções no problema de otimização. Como exemplo foi considerado o problema de maximização de rigidez, com restrição de volume. Todas as implementações foram realizadas em linguagem de programação C, e o algoritmo de otimização utilizado é o critério de optimalidade. Foram implementadas as seguintes restrições de manufatura com a técnica de projeção: membro mínimo, buraco mínimo, simetria, extrusão, é revolução, repetição de padrões, fundição, forjamento, e laminação. Estas restrições mostram a grande capacidade da técnica de projeção para controlar a solução do problema de otimização sem implicar num grande aumento do custo computacional. Os resultados encontrados mostram a potencialidade de utilizar restrições de manufatura na OT, porém estão longe de esgotarem o assunto, nesse tema recente que vem sendo explorado no Método de Otimização Topológica (MOT). / The design of a mechanical component is a very complex task, which includes constraints such as maximum weight and maximum stiffness, and also manufacturing constraints, associated with the manufacturing processes required at the shop floor. It is known that Topology Optimization (TO), despite of being a very effective and powerful method to obtain optimal solutions, generates solutions with complex geometries that are too much expensive to be manufactured or just can not be made. The projection scheme has been chosen as the most appropriate technique for implementing the proposed constraints. This scheme solves the proposed problem in a domain of design variables and then projects these results into a pseudo-density domain to find the solution. The relation between both domains is defined by the projection function and variable mapping defined in a different way for each constraint. In this work, manufacturing constraints for TO are implemented in a way that the possible solutions of the optimization problem are restricted. As an example, the traditional stiffness maximization problem is considered. All implementations have been done using C programming language, and the optimization algorithm applied is the optimality criteria. The following manufacturing constraints have been implemented using the projection scheme: minimal member size, minimal hole size, symmetry, extrusion, revolution, pattern repetition, casting, forging and lamination. These constraints show the large capacity of the projection scheme to control the solution for the optimization without adding a large computational cost. The results that have been found show the great power of using manufacturing constraints in the TO, however, they are far from exhausting this topic that has been recently explored in the Topology Optimization Method (TOM).
|
4 |
Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a Level-Set MethodMichailidis, Georgios 27 January 2014 (has links) (PDF)
The main contribution of this thesis is the implementation of manufacturing constraints in shape and topology optimization. Fabrication limitations related to the casting process are formulated as mathematical constraints and introduced in the optimization algorithm. In addition, based on the same theoretical and modelization tools, we propose a novel formulation for multi-phase optimization problems, which can be extended to the optimization of structures with functionally-graded properties. A key ingredient for the mathematical formulation of most problems throughout our work is the notion of the signed distance function to a domain. This work is divided into three parts. The rst part is bibliographical and contains the necessary background material for the understanding of the thesis' main core. It includes the rst two chapters. Chapter 1 provides a synopsis of shape and topology optimization methods and emphasizes the combination of shape sensitivity analysis and the level-set method for tracking a shape's boundary. In Chapter 2 we give a short description of the casting process, from which all our manufacturing constraints derive. We explain how industrial designers account for these limitations and propose a strategy to incorporate them in shape and topology optimization algorithms. The second part is about the mathematical formulation of manufacturing constraints. It starts with Chapter 3, where the control of thickness is discussed. Based on the signed distance function, we formulate three constraints to ensure a maximum and minimm feature size, as well as a minimal distance between structural members. Then, in Chapter 4, we propose ways to handle molding direction constraints and combine them with thickness constraints. Finally, a thermal constraint coming from the solidi cation of cast parts is treated in Chapter 5 using several thermal models. Multi-phase optimization is discussed in the third part. The general problem of shape and topology optimization using multiple phases is presented in detail in Chapter 6. A "smoothed-interface" approach, based again on the signed distance function, is proposed to avoid numerical di culties related to classical "sharp-interface" problems and a shape derivative is calculated. An extension of this novel formulation to general types of material properties' gradation is shown in the Appendix A.
|
5 |
Characterization of Additive Manufacturing Constraints for Bio-Inspired, Graph-Based Topology OptimizationPalmer, Asa Edward Easton January 2021 (has links)
No description available.
|
Page generated in 0.0819 seconds