• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Récepteurs aux estrogènes et remodelage cardiaque chez l'animal adulte ayant subi un environnement foetal défavorable

Abdelguerfi, Lynda January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Hypoxie placentaire et atteinte surrénalienne foetale dans un modèle de restriction de croissance intra-utérine chez le rat

Bibeau, Karine January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
3

Hypoxie placentaire et atteinte surrénalienne foetale dans un modèle de restriction de croissance intra-utérine chez le rat

Bibeau, Karine January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
4

Réduction d'expansion volumique au cours de la gestation : conséquence sur la circulation utéro-placentaire

Bigonnesse, Emilie 07 1900 (has links)
No description available.
5

Effets d'une modification de l'environnement post-natal dans un modèle de programmation foetale des pathologies adultes

Bibeau, Karine January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
6

Programmation foetale des maladies adultes : altération au niveau rénal

Gagnon, Marie-Ève January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
7

Adaptations métaboliques cardiaques chez le fœtus de rat dans un modèle de restriction de croissance intra-utérine

Maréchal, Loïze 12 1900 (has links)
La restriction de croissance intra-utérine (RCIU) est une conséquence immédiate d’un environnement utérin défavorable qui prédispose les individus atteints à de plus grands risques de développer des maladies cardiométaboliques une fois adulte. L’environnement fœtal s’ajoute ainsi à l’hérédité, au sexe et au mode de vie comme facteur déterminant de la santé cardiométabolique. Afin de mieux comprendre les différents aspects de cette prédisposition, notre laboratoire a développé un modèle animal de RCIU asymétrique recréant une diminution de la perfusion placentaire. La caractérisation des animaux a mis en évidence des différences dans la physiologie cardiovasculaire des individus adultes avec des dissemblances selon le sexe, ainsi qu’une différence dans l’expression de plusieurs gènes impliqués dans le métabolisme lipidique chez le fœtus. A partir de ces données, nous émettons l’hypothèse que le cœur fœtal RCIU subit une reprogrammation métabolique, conséquence du stress causé par l’environnement fœtal défavorable. Nous nous attendons aussi à une régulation différente du métabolisme entre les mâles et les femelles. Pour répondre à cette hypothèse, nous avons tout d’abord déterminé la contribution du métabolisme lipidique dans les cœurs fœtaux RCIU ainsi que sa régulation. Ensuite, nous avons approfondi les conséquences d’un métabolisme lipidique élevé dans les cœurs fœtaux RCIU. Le sexe des animaux a été pris en compte dans nos travaux. L’ensemble de ces travaux démontrent une plus grande utilisation du métabolisme lipidique chez les fœtus RCIU, impliquant une activation du récepteur nucléaire PPARα et du coactivateur PGC1a par une abondance d’acides gras (AG) à longue chaîne dans les cœurs fœtaux RCIU. L’activation de PPARα entraine une augmentation de l’expression de nombreux gènes impliqués dans l’oxydation des AG et de la biogenèse mitochondriale. Les mitochondries des cœurs fœtaux RCIU femelles montrent de plus grandes capacités de production d’ATP, comparées aux femelles témoins, mais aucune différence n’a été montrée chez les mâles. Un tel dysmorphisme a également été observé dans l’augmentation des capacités d’oxydation des AG à très longues chaînes chez les femelles RCIU, mais pas chez les mâles. L’augmentation de l’expression de Pdk4 dans les cœurs fœtaux RCIU confirme le fort métabolisme lipidique et suggère une abondance d’acétyl-CoA, molécule intermédiaire à plusieurs voies métaboliques, dont la production de corps cétoniques. Nous avons montré une synthèse intracardiaque de corps cétoniques chez les fœtus RCIU, sans élévation de la cétolyse, causant une accumulation d’acétoacétate et de β-hydroxybutyrate (bHB). Enfin, l’exploration des rôles signalétiques du bHB nous a permis d’observer une régulation positive de ce corps cétonique sur le métabolisme lipidique, par une activation de PPARα. En conclusion, ce projet de thèse a contribué à mieux comprendre les mécanismes d’adaptation métabolique des cœurs fœtaux à une RCIU causée par une diminution de la perfusion placentaire en fonction du sexe. Notre travail ouvre également la voie à de nouvelles avenues de recherche sur le rôle signalétique des corps cétoniques et des AG à longue chaîne dans la programmation des maladies cardiométaboliques. / An unfavorable womb environment often leads to intrauterine growth restriction (IUGR), which is known to increase the likelihood of developing cardiometabolic diseases later in life. The fetal environment is thus added to other factors such as heredity, sex and lifestyle that have an impact on cardiometabolic health. To investigate IUGR predisposed condition, our laboratory has developed an animal model of asymmetric IUGR by decreasing placental perfusion. Our findings using this animal model have highlighted sex-dependent differences in the cardiovascular physiology of IUGR adults, and specific changes in the expression of key genes involved in lipid metabolism in IUGR fetuses. Therefore, we hypothesize that the IUGR fetal heart undergoes a metabolic remodeling in response to the stress caused by the unfavorable uterine environment. We also expect selective metabolic changes in males and females. To verify this hypothesis, we addressed the contribution and regulation of lipid metabolism in IUGR fetal hearts. We also thoroughly investigated the consequences of a high lipid metabolism in IUGR fetal hearts. Changes between males and females were also considered. This study shows an increased use of lipid metabolism in IUGR fetuses, which involves the transcriptional activation of the nuclear receptor PPARα and the coactivator PGC1 in response to accumulated levels of specific long-chain fatty acids (FA) in IUGR fetal hearts. Activation of PPARα lead to an increase in the expression of critical genes involved in the oxidation of FAs and mitochondrial biogenesis. Mitochondrial respiration analysis demonstrated a greater ATP production capability in female IUGR fetal hearts compared to control females, a finding not observed in males. The increased expression of Pdk4 in IUGR fetal hearts attests such a strong lipid metabolism and suggests an abundance of acetyl-CoA, an intermediate molecule to several metabolic pathways, including the production of ketone bodies. Indeed, our results indicate an increased intracardiac synthesis of ketone bodies in IUGR fetuses without inducing ketolytic genes, resulting in significant accumulation of acetoacetate and β-hydroxybutyrate (bHB). Moreover, we provide evidence of a signaling role of bHB with a positive regulation of lipid metabolism through the transcriptional activation of PPARα. In conclusion, this thesis contributes to a better understanding of the mechanisms involved in the metabolic adaptation of fetal hearts to IUGR and highlights selective changes according to sex. Our study also paves the way for new research avenues on the signaling role of ketone bodies and long-chain FAs on the programming of cardiometabolic diseases.
8

Métabolisme énergétique cardiaque fœtal dans un modèle de restriction de croissance intra-utérine chez le rat

Monfils, Sarah 03 1900 (has links)
Une diète faible en sodium donnée à des rates lors de la dernière semaine de gestation induit une diminution de l’expansion volumique, du diamètre des artères utérines et du poids des placentas comparativement à des rates témoins. Ces perturbations suggèrent une diminution de la perfusion placentaire affectant l’apport foetal en nutriments. Les ratons naissent avec une restriction de croissance intra-utérine (RCIU). Chez le foetus, le substrat énergétique cardiaque principal est le glucose via la glycolyse. À la naissance, la source principale d’énergie est l’utilisation des acides gras par la β-oxydation. Nous émettons l’hypothèse que dans ce modèle de RCIU, le coeur foetal répond à la diminution d’apport nutritionnel due à une atteinte maternelle en adaptant son métabolisme énergétique cardiaque à la baisse. Les rates gestantes (témoins et recevant la diète faible en sodium) sont sacrifiées au jour 22 de gestation (sur 23). Les coeurs foetaux sont prélevés afin de caractériser les protéines dites « limitantes » in vitro des voies de la glycolyse et de la β-oxydation. Les expressions protéiques de GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2, mesurées par immunobuvardage de type Western, sont similaires entre les coeurs des foetus RCIU et témoins, mâles et femelles. L’expression protéique de CPT1α est diminuée dans les coeurs des femelles RCIU seulement. Il n’existe aucune différence significative entre les différents groupes quant à l’activité enzymatique de PKM1/2. Nos résultats dressent un profil métabolique général suggérant que le sexe du foetus peut avoir un effet sur la réponse cardiaque foetale à une atteinte du volume sanguin maternel causée par la diète restreinte en sodium. Ce profil métabolique semble démontrer une atteinte du catabolisme des lipides. Afin de bien caractériser cette réponse du mécanisme énergétique, l’activité enzymatique des autres enzymes principales de la glycolyse (HK1, HK2, PFK1), le flux intra-mitochondrial d’acyl CoA à travers les CPTs ainsi que la quantité totale d’acétyl CoA devront être quantifiés. / A low sodium diet was given to pregnant rats during the last week of gestation. This diet diminished the maternal expansion of blood volume, the uterine arteries diameter, and placental weight, when compared to their controls. Together, these results suggest a lower placenta perfusion and a decreased output of nutrients to the fetus. The offspring of these pregnant rats were born with an intra-uterine growth retardation (IUGR). The fetal heart utilizes glucose through glycolysis as the major cardiac energy substrate. At birth, the principal source of energy switches to the oxidation of fatty acids, through β-oxydation. We hypothesized that within our IUGR model, the fetal heart could respond to a diminished nutritional intake due to the maternal input when a decreased cardiac energy metabolism was present. The pregnant rats of both groups (controls and on the low sodium diet) were sacrificed on day 22 of a 23 day gestation. The fetal hearts were then analyzed looking for signs of the limiting proteins glycolysis and β-oxidation. The GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2 proteins obtained through a Western immunoblot method were similar between the hearts of the IUGR and their control fetuses, whether they were male or female. The protein expression of CPT1α was lower only in female IUGR fetal hearts. There was no significant difference between the groups with respect to the enzymatic activity of PKM1/2. Our results suggest that the metabolic profile changes with regards to the fetus gender and could affect the fetal cardiac metabolism, due to a lower maternal blood flow caused by a sodium controlled diet, by diminishing its lipid metabolism and sparing glucose metabolism. To characterize the energy metabolism, the enzymatic activity of the other principal limiting enzymes glycolysis (HK1, HK2, PFK1), the intra-mitochondrial flux of acyl CoA through the CPTs and the total quantity of acetyl CoA must also be analyzed.
9

Métabolisme énergétique cardiaque fœtal dans un modèle de restriction de croissance intra-utérine chez le rat

Monfils, Sarah 03 1900 (has links)
Une diète faible en sodium donnée à des rates lors de la dernière semaine de gestation induit une diminution de l’expansion volumique, du diamètre des artères utérines et du poids des placentas comparativement à des rates témoins. Ces perturbations suggèrent une diminution de la perfusion placentaire affectant l’apport foetal en nutriments. Les ratons naissent avec une restriction de croissance intra-utérine (RCIU). Chez le foetus, le substrat énergétique cardiaque principal est le glucose via la glycolyse. À la naissance, la source principale d’énergie est l’utilisation des acides gras par la β-oxydation. Nous émettons l’hypothèse que dans ce modèle de RCIU, le coeur foetal répond à la diminution d’apport nutritionnel due à une atteinte maternelle en adaptant son métabolisme énergétique cardiaque à la baisse. Les rates gestantes (témoins et recevant la diète faible en sodium) sont sacrifiées au jour 22 de gestation (sur 23). Les coeurs foetaux sont prélevés afin de caractériser les protéines dites « limitantes » in vitro des voies de la glycolyse et de la β-oxydation. Les expressions protéiques de GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2, mesurées par immunobuvardage de type Western, sont similaires entre les coeurs des foetus RCIU et témoins, mâles et femelles. L’expression protéique de CPT1α est diminuée dans les coeurs des femelles RCIU seulement. Il n’existe aucune différence significative entre les différents groupes quant à l’activité enzymatique de PKM1/2. Nos résultats dressent un profil métabolique général suggérant que le sexe du foetus peut avoir un effet sur la réponse cardiaque foetale à une atteinte du volume sanguin maternel causée par la diète restreinte en sodium. Ce profil métabolique semble démontrer une atteinte du catabolisme des lipides. Afin de bien caractériser cette réponse du mécanisme énergétique, l’activité enzymatique des autres enzymes principales de la glycolyse (HK1, HK2, PFK1), le flux intra-mitochondrial d’acyl CoA à travers les CPTs ainsi que la quantité totale d’acétyl CoA devront être quantifiés. / A low sodium diet was given to pregnant rats during the last week of gestation. This diet diminished the maternal expansion of blood volume, the uterine arteries diameter, and placental weight, when compared to their controls. Together, these results suggest a lower placenta perfusion and a decreased output of nutrients to the fetus. The offspring of these pregnant rats were born with an intra-uterine growth retardation (IUGR). The fetal heart utilizes glucose through glycolysis as the major cardiac energy substrate. At birth, the principal source of energy switches to the oxidation of fatty acids, through β-oxydation. We hypothesized that within our IUGR model, the fetal heart could respond to a diminished nutritional intake due to the maternal input when a decreased cardiac energy metabolism was present. The pregnant rats of both groups (controls and on the low sodium diet) were sacrificed on day 22 of a 23 day gestation. The fetal hearts were then analyzed looking for signs of the limiting proteins glycolysis and β-oxidation. The GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2 proteins obtained through a Western immunoblot method were similar between the hearts of the IUGR and their control fetuses, whether they were male or female. The protein expression of CPT1α was lower only in female IUGR fetal hearts. There was no significant difference between the groups with respect to the enzymatic activity of PKM1/2. Our results suggest that the metabolic profile changes with regards to the fetus gender and could affect the fetal cardiac metabolism, due to a lower maternal blood flow caused by a sodium controlled diet, by diminishing its lipid metabolism and sparing glucose metabolism. To characterize the energy metabolism, the enzymatic activity of the other principal limiting enzymes glycolysis (HK1, HK2, PFK1), the intra-mitochondrial flux of acyl CoA through the CPTs and the total quantity of acetyl CoA must also be analyzed.

Page generated in 0.1621 seconds