• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mortalin plays a protective role in cell survival through the regulation of the PERK/eIF2α/ATF4 pathway during mouse embryonic development / Etude de Mortalin dans la régulation de la voie de signalisation PERK/eIF2α/ATF4 au cours du développement embryonnaire de la souris

Frisdal, Aude 30 May 2014 (has links)
Le développement cranio-facial est un processus complexe qui implique interactions tissulaires et différenciations cellulaires. La façon dont ces processus sont coordonnés lors de l'embryogenèse reste évasive. Perturber ce développement coordonné provoque un large éventail de malformations. Afin de trouver de nouveaux gènes impliqués dans le développement de la tête, un criblage phénotypique a été réalisé par mutagenèse. L'une des lignées de souris obtenues montre des malformations au niveau des arches pharyngées (AP), qui sont les précurseurs de la tête. Ces mutants meurent à mi gestation, due à des problèmes vasculaires. La mutation ponctuelle générée a été localisé dans le gène Mortalin. Mon travail de thèse vise à comprendre comment Mortalin contrôle le développement embryonnaire. Mortalin est exprimée de manière ubiquitaire, puis son expression augmente au niveau des AP, dans les tissus musculaires et nerveux. Pour déterminer les mécanismes moléculaires affectées chez ce mutant, un profil d'expression génique a révélé l'induction de gènes impliqués dans la réponse au stress du réticulum endoplasmique (RE), appelée UPR, dont le rôle est de rétablir l'homéostasie du RE. Mortalin est impliqué dans le contrôle de l'UPR en interagissant avec BiP, un régulateur direct de cette voie. L'activation soutenue de l'UPR entraîne l'apoptose, ce que nous observons chez nos mutants. De plus, l'analyse du cycle cellulaire indique que la phase S est plus longue chez le mutant, suggérant que Mortalin régule le cycle cellulaire. Ainsi, l'ensemble des données suggère que Mortalin est nécessaire pour la survie des cellules au cours du développement. / The development of the head is a complex process that involves tissue interaction and cellular differentiation. Precisely how these processes are coordinated during embryogenesis remains elusive. Disruption of this coordinated development causes a wide range of malformations. In order to find new genes involved in the development of the head, a phenotype-driven ENU screen was performed. One of the mouse lines generated exhibits small pharyngeal arches (PAs), which are the main precursors of the head. Mutant embryos die around mid-gestation, most likely as a result of defective vasculature. We mapped the ENU-mediated point mutation within Mortalin. My thesis work aims to understand how Mortalin controls embryonic development. Mortalin is ubiquitously expressed before mid-gestation. Then its expression increases in the PAs and cranial ganglia. In older embryos, mortalin is expressed in muscle and nervous tissue. To determine which molecular mechanisms are affected in the mutant, gene expression profil revealed the induction of genes involved in the response to endoplasmic reticulum (ER) stress, called UPR. The role of the UPR is to restore homeostasis in the ER. I found that Mortalin regulates the UPR by interacting with BiP, a direct regulator of this pathway. Sustained activation of UPR leads to apoptosis, which is observed in our mutant. Cell cycle has been analyzed to investigate the cause of the reduced embryonic size in our mutant. The length of the S phase was found longer in the mutant, indicating that Mortalin also regulates cell cycle. All together, these data suggest that Mortalin is required for cell survival during development, in part by controlling the UPR.
2

Novel use of glycosylation scanning to map the intracellular trafficking of sarco(endo)plasmic reticulum calcium ATPase 1A

Flinn, Rory J. January 2005 (has links)
Thesis (M.S.)--University of Delaware, 2005. / Principal faculty advisor: Norman J. Karin, Dept. of Biological Sciences. Includes bibliographical references.
3

Characterisation of the novel endoplasmic reticulum chaperone ERDJ5 /

Cunnea, Paula, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
4

Estudo da rota de externalização da dissulfeto isomerase protéica (PDIA1) em células endoteliais / Study of protein disulfide isomerase (PDIA1) externalization route in endothelial cells

Silva, Thaís Larissa Araujo de Oliveira 19 August 2015 (has links)
Dissulfeto isomerase protéica (PDIA1 ou PDI) é uma chaperona e ditiol-dissulfeto oxido-redutase residente do reticulo endoplasmático (RE). PDI é essencial à regulação da proteostase por ter função no enovelamento oxidativo de proteínas e na via de degradação associada ao RE (ERAD). Além disso, PDI interage fisicamente e regula a atividade de NADPH oxidases, e fora da célula é um regulador redox essencial à atividade de proteínas extracelulares. Este pool epi/pericelular da PDI (pecPDI) regula função de proteínas de membrana/secretadas, como integrinas, glicoproteínas gp120 do virus HIV e outras, com múltiplas funções que incluem: trombose, ativação plaquetária, adesão celular, infecção viral e remodelamento vascular. A rota de externalização da PDI permanece obscura, e seu conhecimento pode indicar mecanismos dos efeitos (fisio)patológicos da PDI. A secreção da PDI pela rota RE-Golgi foi sugerida em células endoteliais infectadas pelo vírus da dengue, células pancreáticas e tireoideanas. No entanto, uma varredura sistemática das possíveis rotas de externalização da PDI não foi previamente realizada. Neste estudo, mostramos que células endoteliais (EC) externalizam constitutivamente, por rotas distintas, dois pools de PDI, de superfície celular e solúvel, enquanto na EC não estimulada PDI não foi detectada significativamente em micropartículas. PDI externalizada corresponde a ca.1,4% do pool total de PDI celular. Tanto a PDI de superfície celular como a solúvel foram majoritariamente secretadas pela via de secreção não-convencional do tipo IV independente de GRASP. Contudo, a via de secreção clássica também contribui para externalização basal da PDI de superfície celular, mas não da solúvel basal ou estimulada por PMA, ATP e trombina indicando que todas envolvem escape do Golgi. Além disso, a externalização constitutiva da PDI de superfície em célula muscular lisa vascular também ocorre por via independente de Golgi. Externalização da PDI não foi detectavelmente mediada pela secreção não-convencional do tipo I, II, III, lisossomos secretórios, endossoma de reciclagem e transporte ativo (dependente de ATP) em EC. Considerando que chaperonas são vias essenciais de resposta a estresses, investigamos o efeito de estresse do RE e choque térmico na pecPDI. Estresse do RE não altera a PDI de superfície celular, mas aumenta PDI solúvel. Ambos os pools de PDI não foram alterados por choque térmico, embora a recuperação desse estresse diminua a secreção de PDI. Estes dados sugerem que a liberação de PDI é um processo regulado, dependente da natureza do estresse. Bloqueio da síntese de proteínas com cicloheximida não altera pecPDI, indicando que PDI recém-sintetizada não é preferencialmente externalizada e que o tráfego da PDI independe de outras proteínas recém-sintetizadas. Um aspecto importante do estudo foi indicar uma resiliência da pecPDI à modulação individual de distintas vias secretoras, consistente com uma estrita auto-regulação e possibilidade de vias sinérgicas e complementares. Estes resultados indicam que a externalização da PDI de superfície e PDI secretada possam ser externalizadas por mecanismos independentes. Estes processos compõem um processo regulado estritamente, consistente com papel homeostático da pecPDI / Protein disulfide isomerase (PDIA1 or PDI) is dithiol-disulfide oxireductase chaperone resident in the endoplasmic reticulum (ER). PDI is essential for proteostasis, due to its support of oxidative protein folding and ER-associated protein degradation (ERAD). In addition, PDI associates with NADPH oxidase(s) and regulate its activity, while outside of the cell, PDI redox-dependently modulates extracellular proteins. This epi/pericellular PDI (pecPDI) pool is known to regulate membrane/secreted proteins such as integrins, HIV glycoprotein gp120 and others, with functions that involve thrombosis, platelet function, cell adhesion, viral infection and vascular remodeling. PDI externalization route remains enigmatic and its elucidation can help understand some (patho)physiological PDI effects. An ER-Golgi route for PDI secretion has been as described on dengue virus-infected endothelial cells pancreatic and thyroid) cells. However, none of these papers addressed PDI secretion routes in a systematic fashion. Here, we show that endothelial cells (EC) constitutively externalize, through different routes, two PDI pools, a cell-surface and a secreted one, while in nonstimulated ECs PDI was not significantly detected in microparticles. Externalized PDI corresponds to < 2% of total cellular PDI pool. Both cell-surface and soluble PDI were predominantly externalized through unconventional type IV GRASP-independent pathway(s). However, the classical secretory pathway also contributes to basal cell-surface, but not soluble, PDI externalization, as PMA, ATP or thrombin-stimulated secretion also involve Golgi bypass. Furthermore, constitutive cell-surface PDI externalization in vascular smooth muscle cells also occurs in a Golgi-independent way. PDI externalization was not detectably mediated by non-conventional type I, II and III secretion routes, secretory lysosomes, recycling endosomes and ATP dependent active transport in EC. Since chaperones are essential for cellular stress response, we assessed the effects of ER stress and heat-shock on pecPDI. ER stress did not affect cell-surface PDI but increased the soluble pool. Both PDI pools were unaltered by heat shock, while stress recovery decreased PDI secretion. These data suggest that PDI release is finely tuned and dependent on the type of stress. Blockade of protein synthesis with cycloheximide did not change pecPDI levels, suggesting that newly-synthesized PDI is not preferentially externalized and that PDI traffic does not require newly-synthesized proteins. An important aspect of the study was the evidence for pecPDI resilience to individual modulation of distinct secretion routes, consistent with strict auto-regulation and possible synergic or complementary pathways. Overall, our data suggest that cell-surface and secreted PDI pool externalization are regulated through independent mechanisms, which in both cases involve Type IV non-conventional routes, with some minor contribution of Golgi-dependent secretory pathway. These patterns compose a strictly regulated process, consistent with an important homeostatic role for pecPDI
5

Estudo da rota de externalização da dissulfeto isomerase protéica (PDIA1) em células endoteliais / Study of protein disulfide isomerase (PDIA1) externalization route in endothelial cells

Thaís Larissa Araujo de Oliveira Silva 19 August 2015 (has links)
Dissulfeto isomerase protéica (PDIA1 ou PDI) é uma chaperona e ditiol-dissulfeto oxido-redutase residente do reticulo endoplasmático (RE). PDI é essencial à regulação da proteostase por ter função no enovelamento oxidativo de proteínas e na via de degradação associada ao RE (ERAD). Além disso, PDI interage fisicamente e regula a atividade de NADPH oxidases, e fora da célula é um regulador redox essencial à atividade de proteínas extracelulares. Este pool epi/pericelular da PDI (pecPDI) regula função de proteínas de membrana/secretadas, como integrinas, glicoproteínas gp120 do virus HIV e outras, com múltiplas funções que incluem: trombose, ativação plaquetária, adesão celular, infecção viral e remodelamento vascular. A rota de externalização da PDI permanece obscura, e seu conhecimento pode indicar mecanismos dos efeitos (fisio)patológicos da PDI. A secreção da PDI pela rota RE-Golgi foi sugerida em células endoteliais infectadas pelo vírus da dengue, células pancreáticas e tireoideanas. No entanto, uma varredura sistemática das possíveis rotas de externalização da PDI não foi previamente realizada. Neste estudo, mostramos que células endoteliais (EC) externalizam constitutivamente, por rotas distintas, dois pools de PDI, de superfície celular e solúvel, enquanto na EC não estimulada PDI não foi detectada significativamente em micropartículas. PDI externalizada corresponde a ca.1,4% do pool total de PDI celular. Tanto a PDI de superfície celular como a solúvel foram majoritariamente secretadas pela via de secreção não-convencional do tipo IV independente de GRASP. Contudo, a via de secreção clássica também contribui para externalização basal da PDI de superfície celular, mas não da solúvel basal ou estimulada por PMA, ATP e trombina indicando que todas envolvem escape do Golgi. Além disso, a externalização constitutiva da PDI de superfície em célula muscular lisa vascular também ocorre por via independente de Golgi. Externalização da PDI não foi detectavelmente mediada pela secreção não-convencional do tipo I, II, III, lisossomos secretórios, endossoma de reciclagem e transporte ativo (dependente de ATP) em EC. Considerando que chaperonas são vias essenciais de resposta a estresses, investigamos o efeito de estresse do RE e choque térmico na pecPDI. Estresse do RE não altera a PDI de superfície celular, mas aumenta PDI solúvel. Ambos os pools de PDI não foram alterados por choque térmico, embora a recuperação desse estresse diminua a secreção de PDI. Estes dados sugerem que a liberação de PDI é um processo regulado, dependente da natureza do estresse. Bloqueio da síntese de proteínas com cicloheximida não altera pecPDI, indicando que PDI recém-sintetizada não é preferencialmente externalizada e que o tráfego da PDI independe de outras proteínas recém-sintetizadas. Um aspecto importante do estudo foi indicar uma resiliência da pecPDI à modulação individual de distintas vias secretoras, consistente com uma estrita auto-regulação e possibilidade de vias sinérgicas e complementares. Estes resultados indicam que a externalização da PDI de superfície e PDI secretada possam ser externalizadas por mecanismos independentes. Estes processos compõem um processo regulado estritamente, consistente com papel homeostático da pecPDI / Protein disulfide isomerase (PDIA1 or PDI) is dithiol-disulfide oxireductase chaperone resident in the endoplasmic reticulum (ER). PDI is essential for proteostasis, due to its support of oxidative protein folding and ER-associated protein degradation (ERAD). In addition, PDI associates with NADPH oxidase(s) and regulate its activity, while outside of the cell, PDI redox-dependently modulates extracellular proteins. This epi/pericellular PDI (pecPDI) pool is known to regulate membrane/secreted proteins such as integrins, HIV glycoprotein gp120 and others, with functions that involve thrombosis, platelet function, cell adhesion, viral infection and vascular remodeling. PDI externalization route remains enigmatic and its elucidation can help understand some (patho)physiological PDI effects. An ER-Golgi route for PDI secretion has been as described on dengue virus-infected endothelial cells pancreatic and thyroid) cells. However, none of these papers addressed PDI secretion routes in a systematic fashion. Here, we show that endothelial cells (EC) constitutively externalize, through different routes, two PDI pools, a cell-surface and a secreted one, while in nonstimulated ECs PDI was not significantly detected in microparticles. Externalized PDI corresponds to < 2% of total cellular PDI pool. Both cell-surface and soluble PDI were predominantly externalized through unconventional type IV GRASP-independent pathway(s). However, the classical secretory pathway also contributes to basal cell-surface, but not soluble, PDI externalization, as PMA, ATP or thrombin-stimulated secretion also involve Golgi bypass. Furthermore, constitutive cell-surface PDI externalization in vascular smooth muscle cells also occurs in a Golgi-independent way. PDI externalization was not detectably mediated by non-conventional type I, II and III secretion routes, secretory lysosomes, recycling endosomes and ATP dependent active transport in EC. Since chaperones are essential for cellular stress response, we assessed the effects of ER stress and heat-shock on pecPDI. ER stress did not affect cell-surface PDI but increased the soluble pool. Both PDI pools were unaltered by heat shock, while stress recovery decreased PDI secretion. These data suggest that PDI release is finely tuned and dependent on the type of stress. Blockade of protein synthesis with cycloheximide did not change pecPDI levels, suggesting that newly-synthesized PDI is not preferentially externalized and that PDI traffic does not require newly-synthesized proteins. An important aspect of the study was the evidence for pecPDI resilience to individual modulation of distinct secretion routes, consistent with strict auto-regulation and possible synergic or complementary pathways. Overall, our data suggest that cell-surface and secreted PDI pool externalization are regulated through independent mechanisms, which in both cases involve Type IV non-conventional routes, with some minor contribution of Golgi-dependent secretory pathway. These patterns compose a strictly regulated process, consistent with an important homeostatic role for pecPDI
6

Mécanismes contributifs au développement de la stéatose hépatique non alcoolique (SHNA) : effets de l'entraînement

Chapados, Natalie A. January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
7

Mécanismes contributifs au développement de la stéatose hépatique non alcoolique (SHNA) : effets de l'entraînement

Chapados, Natalie A. January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0827 seconds