Spelling suggestions: "subject:"feview helpful"" "subject:"areview helpful""
1 |
Exploration of Hedonic and Utilitarian Value of Online ReviewsRaoofpanah, Iman 29 November 2021 (has links)
No description available.
|
2 |
Predicting the Helpfulness of Online Product ReviewsHjalmarsson, Felicia January 2021 (has links)
Review helpfulness prediction has attracted growing attention of researchers that proposed various solutions using Machine Learning (ML) techniques. Most of the studies used online reviews from Amazon to predict helpfulness where each review is accompanied with information indicating how many people found the review helpful. This research aims to analyze the complete process of modelling review helpfulness from several perspectives. Experiments are conducted comparing different methods for representing the review text as well as analyzing the importance of data sampling for regression compared to using non-sampled datasets. Additionally, a set of review, review meta-data and product features are evaluated on their ability to capture the helpfulness of reviews. Two Amazon product review datasets are utilized for the experiments and two of the most widely used machine-learning algorithms, Linear Regression and Convolutional Neural Network (CNN). The experiments empirically demonstrate that the choice of representation of the textual data has an impact on performance with tf-idf and word2Vec obtaining the lowest Mean Squared Error (MSE) values. The importance of data sampling is also evident from the experiments as the imbalanced ratios in the unsampled dataset negatively affected the performance of both models with bias predictions in favor of the majority group of high ratios in the dataset. Lastly, the findings suggest that review features such as unigrams of review text and title, length of review text in words, polarity of title along with rating as review meta-data feature are the most influential features for determining helpfulness of reviews.
|
3 |
A WEB PERSONALIZATION ARTIFACT FOR UTILITY-SENSITIVE REVIEW ANALYSISFlory, Long, Mrs. 01 January 2015 (has links)
Online customer reviews are web content voluntarily posted by the users of a product (e.g. camera) or service (e.g. hotel) to express their opinions about the product or service. Online reviews are important resources for businesses and consumers. This dissertation focuses on the important consumer concern of review utility, i.e., the helpfulness or usefulness of online reviews to inform consumer purchase decisions. Review utility concerns consumers since not all online reviews are useful or helpful. And, the quantity of the online reviews of a product/service tends to be very large. Manual assessment of review utility is not only time consuming but also information overloading. To address this issue, review helpfulness research (RHR) has become a very active research stream dedicated to study utility-sensitive review analysis (USRA) techniques for automating review utility assessment.
Unfortunately, prior RHR solution is inadequate. RHR researchers call for more suitable USRA approaches. Our current research responds to this urgent call by addressing the research problem: What is an adequate USRA approach? We address this problem by offering novel Design Science (DS) artifacts for personalized USRA (PUSRA). Our proposed solution extends not only RHR research but also web personalization research (WPR), which studies web-based solutions for personalized web provision. We have evaluated the proposed solution by applying three evaluation methods: analytical, descriptive, and experimental. The evaluations corroborate the practical efficacy of our proposed solution.
This research contributes what we believe (1) the first DS artifacts to the knowledge body of RHR and WPR, and (2) the first PUSRA contribution to USRA practice. Moreover, we consider our evaluations of the proposed solution the first comprehensive assessment of USRA solutions. In addition, this research contributes to the advancement of decision support research and practice. The proposed solution is a web-based decision support artifact with the capability to substantially improve accurate personalized webpage provision. Also, website designers can apply our research solution to transform their works fundamentally. Such transformation can add substantial value to businesses.
|
4 |
以推敲可能性模式探討影響評論幫助性之因素 / Factors Affecting Review Helpfulness : An Elaboration Likelihood Model Perspective熊耿得, Hsiung, Keng-Te Unknown Date (has links)
在電子商務中,評論會影響消費者的購買決策,透過評論幫助性可以篩選出關鍵的評論,以利消費者進行決策。本研究以推敲可能性模式作為研究架構,透過文字探勘挖掘評論的文本特性來探討影響幫助性之要素,中央線索除了評論長度與可讀性外,利用LDA主題模型衡量評論主題廣度;周邊線索則是透過環狀情緒模型進行情感分析,並透過評論者排名來衡量來源可信度,利用亞馬遜商店中的資料進行驗證分析。結果發現,消費者在判斷評論幫助性時,會參考中央以及周邊線索。具備高論點品質的中央線索將有效提升評論幫助性;周邊線索整體而言,證實了社會中存在負向偏誤,具備喚起度的負向情感較容易提升評論幫助性,而評論是否被認為有幫助確實會受到評論者的排名所影響。進階分析結果顯示,周邊的情感效果會受到評論者排名高低的影響,前段評論者應保持中立避免帶有個人情緒;中段評論者的評論幫助性會隨著情緒喚起度而增加;後段評論者則需要增加自身的負向情感,才能夠對於評論幫助性有正向影響。 / Online reviews are important factors in consumers’ purchase decision. The helpfulness of reviews allows consumers to quickly identify useful reviews. The purpose of this study is to investigate the nature of online reviews that affect their helpfulness through the lens of the elaboration likelihood model. For the central cues, we adopt latent dirichlet allocation to measure review breadth in addition to review length and review readability. For the peripheral cues, we use the sentiment analysis based on the circumplex model to catch the emotion effect and use the ranking of the reviewers to measure the source credibility. We used a dataset collected from Amazon.com to evaluate our model. The result suggests that consumers focus both central and peripheral cues when they read reviews. Consumers care about the length, breadth and readability of reviews associated with the central route, and the emotional effects associated with the peripheral route. In the advanced research, we split our sample into 3 groups by their ranking of the reviewers. We found that the top reviewers should keep neutral and avoid personal feelings to make their reviews more helpful; the middle reviewers can use more arousal words to improve their review helpfulness; the bottom reviewers must increase their emotional valence strength, especially the negative emotion to higher the perceived review helpfulness.
|
Page generated in 0.0661 seconds