• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 32
  • 14
  • 14
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 304
  • 304
  • 85
  • 84
  • 79
  • 54
  • 52
  • 49
  • 43
  • 40
  • 35
  • 32
  • 29
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Experimental Studies of the Drag of an Axisymmetric Submarine Hull

Freudenthal, John Lindsley 13 December 2002 (has links)
The purpose of these studies was to measure the drag coefficient of a small model submarine to add data to a Reynolds number study. First, a laser Doppler velocimeter (LDV) was used to measure the flow characteristics of the Mississippi State University water tunnel. The velocity and turbulence intensity profiles were measured for a range of freestream velocities of 8.6 m/s to 10.7 m/s. Several wake velocity profiles were taken for a model submarine at downstream distances of x/d = 10 to x/d = 28, with a freestream velocity of 8.6 m/s. A formula for the drag coefficient that uses only mean velocity measurements in the wake was derived for an axisymmetric body using the assumptions of a self-similar wake and a power law behavior of the wake scales. The experimental drag coefficient results are compared to computational fluid dynamic (CFD) solutions.
192

Experiments in Vortex Formation of Plunging & Flapping Flat Plates

Stanley, Daniel C. January 2008 (has links)
No description available.
193

Characterization of Transition to Turbulence for Blood in an Eccentric Stenosis Under Steady Flow Conditions

Casey, David Michael January 2014 (has links)
No description available.
194

CFD Analysis of Turbulent Twin Impinging Axisymmetric Jets at Low Reynolds Number

Gopalakrishnan, Raj Narayan January 2017 (has links)
No description available.
195

Investigation of a Laminar Airfoil with Flow Control and the Effect of Reynolds Number

Thake, Michael Patrick, Jr. 10 January 2011 (has links)
No description available.
196

Transport of particles and organisms in stratified and viscoelastic fluids

Rajat Abhijit Dandekar (13169307) 29 July 2022 (has links)
<p>In this thesis, we unveiled the impact of fluid stratification and viscoelasticity on the transport of microorganisms and microparticles. The thesis is divided into four chapters. Chapters 2 and 3 focus on the transport of the swimming sheet in density and viscosity stratified fluids. Chapter 4 is devoted to analyze the motion of anisotropic particles in density stratified fluids. Chapter 5 focuses on the effect of viscoelasticity on the motion of a suspension of spherical particles.</p>
197

Development and Characterization of a Virtual Impactor Type Dust Flow Concentrator

Wang, Hongbing 01 1900 (has links)
<p> A virtual impactor type dust flow concentrator was developed and an experimental investigation was performed to characterize the hydraulic and particulate matter (PM) separation performance of the device. In particular, the pressure drop characteristics, the ratio of the flow through the two branches, and the PM concentration in the minor and main branch of the flow concentrator were evaluated using experiments on a diesel exhaust rig and an air rig. Tests were performed to examine the effect of the inlet flow Reynolds number, the inlet tube lip position relative to the concentration probe, and the flow distribution between the minor and main branches. Numerical simulations were also performed for a simplified concentrator geometry to examine the flow streamlines and pressure drop. The results showed that the ratio of the concentration in the minor and main flow branches changed as the flow rate in these branches changed, reaching a maximum at a minor flow ratio that depended on the lip position. It was observed the difference of the particulate matter concentration in the minor and main branch was greater for higher inlet Reynolds number. For example, the concentration ratio increased 50% as the Reynolds number increased from 2,200 to 25,700. A similar result was observed when the inlet tube lip was moved further into the concentration body. The pressure losses seem to be mainly caused by the changes in flow directions and the change in the cross sectional areas.</p> / Thesis / Master of Applied Science (MASc)
198

Experimental Investigation of Turbulent Flows at Smooth and Rough Wall-Cylinder Junctions

Apsilidis, Nikolaos 10 January 2014 (has links)
Junction flows originate from the interaction between a fluid moving over a wall with an obstacle mounted on the same surface. Understanding the physics of such flows is of great interest to engineers responsible for the design of systems consisting of wall-body junctions. From aerodynamics to turbomachinery and electronics to bridge hydraulics, a number of phenomena (drag, heat transfer, scouring) are driven by the behavior of the most prominent feature of junction flows: the horseshoe vortex system (HVS). Focusing on turbulent flows, the complex dynamics of the HVS is established through its unsteadiness and non-uniformity. The fundamentals of this dynamically-rich phenomenon have been described within the body of a rapidly-expanding literature. Nevertheless, important aspects remain inadequately understood and call for further scrutiny. This study emphasized three of them, by investigating the effects of: model scale, wall roughness, and bed geometry. High-resolution experiments were carried out using Particle Image Velocimetry (PIV). Statistical analyses, vortex identification schemes, and Proper Orthogonal decomposition were employed to extract additional information from the large PIV datasets. The time-averaged topology of junction flows developing over a smooth and impermeable wall was independent of the flow Reynolds number, Re (parameter that expresses the effects of scale). On the contrary, time-resolved analysis revealed a trend of increasing vorticity, momentum, and eruptions of near-wall fluid with Re. New insights on the modal dynamics of the HVS were also documented in a modified flow mechanism. Wall roughness (modeled with a permeable layer of crushed stones) diffused turbulence and vorticity throughout the domain. This effect manifested with high levels of intermittency and spatial irregularity for the HVS. Energetic flow structures were also identified away from the typical footprint of the HVS. Finally, a novel implementation of PIV allowed for unique velocity measurements over an erodible bed. It was demonstrated that, during the initial stages of scouring, the downflow at the face of the obstacle becomes the dominant flow characteristic in the absence of the HVS. Notwithstanding modeling limitations, the physical insight contributed here could be used to enhance the design of systems with similar flow and geometrical characteristics. / Ph. D.
199

Quasi-coherent structures in the marine atmospheric boundary layer

Boppe, Ravi Shankar 29 September 2009 (has links)
Turbulence research in the laboratory over the past three decades has confirmed the existence of quasi-coherent structures amidst the chaos of a turbulent boundary layer. It has been observed that a quasi-periodic phenomena called "bursting" accounts for a major contribution to the turbulent Reynolds stress and the production of turbulent kinetic energy. Bursting is the term used for a sequence of events, where a low-speed streak of fluid from the near wall region lifts away from the wall, slowly at first, and then rapidly moves away from the wall as it convects downstream where it becomes unstable and breaks up violently upon interaction with the outer flow. This ejection of low speed fluid into the mean flow is responsible for locally high values of turbulent kinetic energy. Though a great deal is known about these structures in laboratory flows, little has been done to investigate their existence in the turbulent air flow over the ocean. It would seem, intuitively, that such structures, if present in the marine atmospheric boundary layer, would playa major role in the transfer of momentum, mass and heat across the air-sea interface. The present study is aimed at identifying the existence of burst structures in the marine atmospheric boundary layer. The standard ejection detection schemes like the quadrant, the VITA and the modified u-level techniques were applied to the turbulent wind data measured over the ocean. It was found that the proportion of contribution to the Reynolds stress from the four quadrants of the u'w' plane is in close agreement with the corresponding contributions for a laboratory flow. Ejection detection followed by the grouping of ejections into bursts yielded a mean burst period of 47 sec., at a height of 8.2 m above the water surface, where the mean wind velocity was 6.74 m/s. This burst period corresponds well with the peaks obtained from the autocorrelation of the streamwise velocity signal and the first moment of the stress spectrum. Furthermore, phase averages of these events show a structure which is similar to the structure of the events detected in the laboratory flows. / Master of Science
200

A surface flow visualization study of boundary layer behavior on the blades of a solid-wall compressor cascade at high angles of attack

Russ, Thomas William January 1987 (has links)
The oil-film surface flow visualization technique was applied to circular arc compressor blades in a solid wall, high aspect ratio cascade for the purpose of describing the transition from corner stall to full blade stall, and the blade surface flow under fully stalled conditions. Photos of the visualizations for three stagger angles are presented and analyzed. A map quantitatively describing the observed boundary layer development at midspan is presented. The most interesting discovery of the work showed the suction surface flow to be essentially two-dimensional, in the geometric sense, preceding and following the transition to a fully separated flow at the leading edge. Corner stall was the observed three-dimensional mechanism prior to full stall. For fully-stalled conditions, the three-dimensional mechanism took the form of recirculating flow regions at the blade ends. Complete separation at the leading edge occurred at lower angles of attack for the higher stagger angles. Special blade oil-flow tests were conducted to evaluate Reynolds number and tip clearance effects on boundary layer development. The experimental work was done as part of a larger research program aimed at measuring and predicting the stalled performance of a compressor cascade. / Master of Science

Page generated in 0.0441 seconds