• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 157
  • 32
  • 14
  • 14
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 304
  • 304
  • 85
  • 84
  • 79
  • 54
  • 52
  • 49
  • 43
  • 40
  • 35
  • 32
  • 29
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Análise das características de operação e desempenho de micro jatos sintéticos

Esteves, Fernanda Munhoz 27 November 2012 (has links)
Submitted by Maicon Juliano Schmidt (maicons) on 2015-03-20T19:50:03Z No. of bitstreams: 1 000002F2.pdf: 1101205 bytes, checksum: 35ea0ac880e5841836ff1b5e64d2f9ff (MD5) / Made available in DSpace on 2015-03-20T19:50:04Z (GMT). No. of bitstreams: 1 000002F2.pdf: 1101205 bytes, checksum: 35ea0ac880e5841836ff1b5e64d2f9ff (MD5) Previous issue date: 2012-11-27 / CNPQ – Conselho Nacional de Desenvolvimento Científico e Tecnológico / Componentes eletrônicos estão cada vez mais potentes, necessitando de dissipações térmicas maiores. Os ventiladores atuais, conhecidos comercialmente como "coolers", estão se tornando ineficientes para esta evolução por dependerem de uma maior vazão para atender a demanda de calor dissipado, o que também causa aumento no seu ruído. Como uma alternativa para aprimorar a troca de calor, estudam-se (micro) jatos sintéticos. Estes são produzidos através de uma cavidade selada por uma membrana oscilatória e uma placa com um orifício. A movimentação periódica da membrana produz um jato com valor positivo de quantidade de movimento, que pode ser direcionado para o resfriamento de um dispositivo eletrônico.Para análise térmica, um modelo numérico do dispositivo de refrigeração foi construído em ANSYS CFX 12.0. Variações nos números de Reynolds e Strouhal dos jatos sintéticos e posição da região aquecida na superfície de interesse foram realizadas e seu efeito no desempenho térmico analisado. Os resultados foram comparados a um escoamento convencional de mesma geometria em regime permanente e submetido à mesma vazão mássica média induzida por cada jato sintético. Para a configuração testada, observou-se que os (micro) jatos sintéticos podem fornecer um fluxo de ar mais direcionado para os "hotspots" com maior necessidade de resfriamento. Os resultados encontrados indicam um aumento de número de Nusselt até 122% em jatos sintéticos comparados aos escoamentos contínuos. Logo, confirmam o maior desempenho térmico do jato sintético em relação ao método convencional equivalente e justificam a necessidade de investigações adicionais nesta área. Isto indica que os jatos sintéticos podem ser personalizados ou direcionados especificamente para atender a demanda de resfriamento do problema de interesse. / The rising power consumption of electronic components requires higher and higher thermal dissipation. Current fan systems, commercially known as "coolers", are becoming ineffective to cope with this demand since their performance is dependent on the volumetric flow rate of the driving fan, which becomes more wasteful and noisy. An alternative to improve the heat exchange of current systems is the application of (micro) synthetic jets. These are produced by the oscillations in a cavity bounded by a membrane and a plate with an orifice. Membrane actuation produces a net forward momentum jet through the orifice, which can be applied to cool an electronic device. For this analysis, a numerical model of the cooling device was built on ANSYS CFX 12.0. Variations in jet Reynolds and Strouhal numbers and positioning of the heated region of interest were made and their effect on thermal performance analyzed. Results were compared to a conventional flow with the same geometry but subjected to a single-fan providing steady flow with the same average mass flow rate induced by each synthetic jet. For the configurations tested, it was found that (micro) synthetic jets may provide more directed air flow for "hotspots" with the greatest need of cooling. The results indicate a thermal performance up to 122% higher compared to their equivalent conventional cooling case. This confirmation of the higher thermal performance of synthetic jets relative to a convencional method and justifies the need for the current and additional investigations in this area. Results also indicate that synthetic jets can be customized and specifically directed to meet the cooling demand of the problem in question.
232

Etude analytique, numérique et expérimentale d’écoulements générés par parois mobiles en microfluidique - Application aux micropompes / Analytical, numerical and an experimental study of flows generated by moving boundaries in microfluidics - Application to micropumps

Frankiewicz, Christophe 28 September 2012 (has links)
A l’heure actuelle, la microfluidique est une science en plein développement ayant un besoin croissant de dispositifs permettant de générer des écoulements aux échelles micrométriques. Les phénomènes physiques mis en jeu lors du mouvement d’un fluide sont en effet majoritairement gouvernés par la viscosité (bas nombre de Reynolds) contrairement aux écoulements macroscopiques dominés par les effets inertiels.Dans cette thèse, les écoulements engendrés par le mouvement de parois mobiles ont été étudiés en vue d’une application aux micropompes, dispositifs essentiels en microfluidique.Dans une première partie, une étude analytique et numérique évalue la possibilité de générer un écoulement par un cylindre en rotation à proximité de parois mobiles.Les résultats obtenus du régime de Stokes (Re=0) jusqu’à un nombre de Reynolds Re=60 en régime stationnaire témoignent du potentiel notable d’intégration de cette géométrie dans les microsystèmes en tant que micropompes.Dans une seconde partie, une micropompe, basée sur un principe de fonctionnement novateur, est conçue par l’intermédiaire des techniques de microfabrication. Dans cette optique, le procédé de gravure RIE d’un élastomère est entièrement développé. Les performances de la micropompe en terme de pression et débit générés dépassent l’état de l’art des microsystèmes similaires et ceci en utilisant une technologie simple et bas-coût / Currently, microfluidic is a science field in constant development with an increasing need of devices able to generate flows at the micrometer order. At these length scales, physical phenomenons occurring in a moving fluid are mainly governed by its viscosity (low Reynolds number) contrary to macroscale flows dominated by inertial effects.In this thesis, a study on flows engendered by moving walls has been carried to fulfill to micropumps devices.In a first part, an analytical and a numerical study evaluates the possibility to generate a flow for a rotating cylinder close to moving boundaries.The results ranging from Stokes flows (Re=0) up to the low Reynolds number Re=60 in the stationary regime reveals the noticeable potential of integrating this device in microsystems as a micropump. In a second part, a new micropump, based on an innovative principle, is designed thanks to microfabrication technologies. In this perspective, the etching process of an elastomer called Silastic S is developed. Micropump performances in terms of pressure and flow rate are beyond the state of the art for similar microsystems and are achieved by using a simple and low-cost technology
233

Studies In Stability Of Newtonian And Viscoelastic Fluid Flow Past Rigid And Flexible Surfaces

Chokshi, Paresh P 12 1900 (has links)
The surface oscillations in a deformable wall are known to induce an instability in the adjacent flow even in the absence of inertia. This instability, if understood properly, can be exploited to generate a well-mixed flow pattern with improved transport coefficients in microfluidic systems, wherein the benefits of inertial instabilities can not be realised. In order to utilise the wall deformability in micro-devices as well as other biotechnological applications, the quantitative knowledge of the critical parameter for the on-set of instability and the nature of bifurcation in the region of transition point are essential. With this objective, a major portion of this thesis deals with the stability analysis of flow past a flexible surface. For Newtonian flow over a deformable solid medium, the analyses of hydrodynamic stability in two flow regimes are presented: the viscous mode instability in the limit of zero Reynolds number, and the wall mode instability in the limit of high Reynolds number. The flexible solid in both analyses is described as a neo-Hookean solid continuum of finite thickness. The previous work on viscous instability using the same solid model ignored the viscous dissipation in the solid. In the present study, a purely elastic neo-Hookean model is augmented to incorporate the viscous stresses accounting for the dissipative mechanism in an aqueous gel-like solid medium. The linear stability analysis for this neo-Hookean viscoelastic solid shows a dramatic influence of solid viscosity on the stability behaviour. The important parameter here is where ηr is the solid viscosity relative to the fluid viscosity and H is the solid-to-fluid thickness ratio. While the effect solid viscosity is stabilizing for a further increase in viscosity in the regime reduces the critical shear rate for transition, indicating a destabilizing influence of solid viscosity. The weakly nonlinear analysis indicates that the bifurcation is subcritical for most values of H when ηr =0. However, for non-zero solid viscosity, the analysis reveals a range of ηr for which the nature of bifurcation is supercritical. The results are in contrast to the behaviour for the Hookean (linear) elastic solid, for which the effect of solid viscosity is always stabilising and the bifurcation is subcritical for all values of H and ηr. For the wall mode instability, critical parameters for the linear and the neo-Hookean elastic solid are found to be very close. The weakly nonlinear analysis of the wall mode instability shows that the instability is driven to a supercritically stable branch, indicating the possibility of a stable complex flow pattern which is ) correction to the base flow. The amplitude of the supercritically bifurcated equilibrium state, A1e, is derived in the vicinity of the critical point, and its scaling with the flow Reynolds number is obtained. The nonlinear analysis is also carried out using the asymptotic analysis in small parameter Re−1/3. The asymptotic results are found to be in good agreement with the numerical solutions for For a polymeric flow over a deformable solid medium, the viscous instability is analysed by extending the viscous mode for the Newtonian fluid to the fluid with finite elasticity. The viscoelastic fluid is described by an Oldroyd-B model which introduces two additional parameters: the Weissenberg number, W , and β, the ratio of solvent-to-solution viscosity. The polymer viscosity parameter β is an indirect measure of polymer concentration with the extreme cases of β =1 representing the Newtonian fluid and β =0the upper convected Maxwell fluid. The analysis considers both the linearly elastic and the neo-Hookean models to describe the deformable solid. The analysis reveals the presence of two classes of modes: the finite wavelength modes and the shortwave modes. The behaviour of the finite wavelength modes is similar for both the models of solid medium. The effect of increasing fluid Weissenberg number and also increasing polymer concentration (achieved by reducing β below 1) on the finite wavelength instability is stabilising. The viscous instability ceases to exist for W larger than a certain maximum value Wmax. The behaviour of the shortwave mode is remarkably different for both the models of solid. Using the shortwave asymptotic, the differences are elucidated and it is shown that the shortwave instabilities in both the models are qualitatively different modes. For a linear elastic solid model, the shortwave mode is attributed to the normal-stresses in polymeric fluid with high Weissenberg number. This mode does not exist for the Newtonian flow and is a downstream travelling disturbance wave. On the other hand, the shortwave mode for the neo-Hookean model is attributed to the normal-stress difference in the elastic solid. Hence, this mode does exist for the Newtonian fluid and is an upstream travelling disturbance wave. The role of polymer concentration in the criticality of finite wavelength and shortwave modes is examined for a wide range of Weissenberg number. The results are condensed in a map showing the stability boundaries in parametric space covering β, W and H. The weakly nonlinear analysis reveals that the bifurcation of linear instability is subcritical when there is no dissipation in the solid. The nature of bifurcation, however, changes to supercritical when the viscous effects in the solid are taken into account. The final problem of this thesis deals with the flow past a rigid surface. Here, the stability of base profile in a plane Couette flow of dilute polymeric fluid is studied at moderate Reynolds number. Three variants of Oldroyd-B model have been analysed, viz. the classical Oldroyd-B model, the diffusive Oldroyd-B model, and the non-homogeneous Oldroyd-B model. The Newtonian wall modes are modified marginally for the polymeric fluid described by the classical Oldroyd-B model. The Oldroyd-B model with artificial diffusivity introduces the additional ‘diffusive modes’ which scale with P´eclet number. The diffusive modes become the slowest decaying modes, in comparison to the wall modes, for large wavenumber disturbances. For these two models, the polymeric flow is linearly stable. Using the equilibrium flow method, wherein the nonlinear flow is assumed to be at the transition point, the finite amplitude disturbances are analysed, and the threshold energy necessary for subcritical transition is estimated. The third variant of Oldroyd-B model accounts for non-homogeneous polymer concentration coupled with the stress field. This model exhibits an instability in the linear analysis. The ‘concentration mode’ becomes unstable when the fluid Weissenberg number exceeds a certain transition value. This instability is driven by the stress-induced fluctuations in polymer number density.
234

A numerical study of inertial flow features in moderate Reynolds number flow through packed beds of spheres

Finn, Justin Richard 20 March 2013 (has links)
In this work, flow through synthetic arrangements of contacting spheres is studied as a model problem for porous media and packed bed type flows. Direct numerical simulations are performed for moderate pore Reynolds numbers in the range, 10 ≤ Re ≤ 600, where non-linear porescale flow features are known to contribute significantly to macroscale properties of engineering interest. To first choose and validate appropriate computational models for this problem, the relative performance of two numerical approaches involving body conforming and non-conforming grids for simulating porescale flows is examined. In the first approach, an unstructured solver is used with tetrahedral meshes, which conform to the boundaries of the porespace. In the second approach, a fictitious domain formulation (Apte et al., 2009. J Comput. Phys. 228 (8), 2712-2738) is used, which employs non-body conforming Cartesian grids and enforces the no-slip conditions on the pore boundaries implicitly through a rigidity constraint force. Detailed grid convergence studies of both steady and unsteady flow through prototypical arrangements of spheres indicate that for a fixed level of uncertainty, significantly lower grid densities may be used with the fictitious domain approach, which also does not require complex grid generation techniques. Next, flows through both random and structured arrangements of spheres are simulated at pore Reynolds numbers in the steady inertial ( 10 ≲ Re ≲ 200) and unsteady inertial (Re ≈ 600) regimes, and used to analyze the characteristics of porescale vortical structures. Even at similar Reynolds numbers, the vortical structures observed in structured and random packings are remarkably different. The interior of the structured packings are dominated by multi-lobed vortex rings structures that align with the principal axes of the packing, but perpendicular to the mean flow. The random packing is dominated by helical vortices, elongated parallel to the mean flow direction. The unsteady dynamics observed in random and structured arrangements are also distinct, and are linked to the behavior of the porescale vortices. Finally, to investigate the existence and behavior of transport barriers in packed beds, a numerical tool is developed to compute high resolution finite-time Lyapunov exponent (FTLE) fields on-the-fly during DNS of unsteady flows. Ridges in this field are known to correspond to Lagrangian Coherent Structures (LCS), which are invariant barriers to transport and form the skeleton of time dependent Lagrangian fluid motion. The algorithm and its implementation into a parallel DNS solver are described in detail and used to explore several flows, including unsteady inertial flow in a random sphere packing. The resulting FTLE fields unambiguously define the boundaries of dynamically distinct porescale features such as counter rotating helical vortices and jets, and capture time dependent phenomena including vortex shedding at the pore level. / Graduation date: 2013
235

Low Reynolds Number Airfoil Aerodynamics

Srinivasa Murthy, P 02 1900 (has links)
In this thesis we describe the development of Reynolds- averaged Navier Stokes code for the flow past two- dimensional configuration. Particularly, emphasis has been laid on the study of low Reynolds number airfoil aerodynamics. The thesis consists of five chapters covering the back ground history, problem formulation, method of solution and discussion of the results and conclusion. Chapter I deals with a detailed background history of low Reynolds number aerodynamics, problem associated with it, state of the art, its importance in practical applications in aircraft industries. Chapter II describes the mathematical model of the flow physics and various levels of approximations. Also it gives an account of complexity of the equations at low Reynolds number regarding flow separation, transition and reattachment. Chapter III describes method of solution, numerical algorithm developed, description of various upwind schemes, grid system, finite volume discrieti-zation of the governing equations described in Chapter II. Chapter IV describes the application of the newly developed Navier Stokes code for the test cases from GAMM Workshop proceedings. Also it describes validation of the code for Euler solutions, Blasius solution for the flow past flat plate and compressible Navier Stokes solution for the flow past NACA 0012 Airfoil at low Reynolds number. Chapter V describes the application of the Navier Stokes code for the more test cases of current practical interest . In this chapter laminar separation bubble characteristics are investigated in detail regarding formation, growth and shedding in an unsteady environment. Finally the conclusion is drawn regarding the robustness of the newly developed code in predicting the airfoil aerodynamic characteristics at low Reynolds number both in steady and unsteady environment. Lastly, suggestion for future work has been highlighted.
236

High Speed Viscous Plane Couette-poiseuille Flow Stability

Ebrinc, Ali Aslan 01 February 2004 (has links) (PDF)
The linear stability of high speed-viscous plane Couette and Couette-Poiseuille flows are investigated numerically. The conservation equations along with Sutherland&amp / #65533 / s viscosity law are studied using a second-order finite difference scheme. The basic velocity and temperature distributions are perturbed by a small-amplitude normalmode disturbance. The small-amplitude disturbance equations are solved numerically using a global method using QZ algorithm to find all the eigenvalues at finite Reynolds numbers, and the incompressible limit of these equations is investigated for Couette-Poiseuille flow. It is found that the instabilities occur, although the corresponding growth rates are often small. Two families of wave modes, Mode I (odd modes) and Mode II (even modes), were found to be unstable at finite Reynolds numbers, where Mode II is the dominant instability among the unstable modes for plane Couette flow. The most unstable mode for plane Couette &amp / #65533 / Poiseuille flow is Mode 0, which is not a member of the even modes. Both even and odd modes are acoustic modes created by acoustic reflections between a will and a relative sonic line. The necessary condition for the existence of such acoustic wave modes is that there is a region of locally supersonic mean flow relative to the phase speed of the instability wave. The effects of viscosity and compressibility are also investigated and shown to have a stabilizing role in all cases studied. Couette-Poiseuille flow stability is investigated in case of a choked channel flow, where the maximum velocity in the channel corresponds to sonic velocity. Neutral stability contours were obtained for this flow as a function if the wave number,Reynolds number and the upper wall Mach number. The critical Reynolds number is found as 5718.338 for an upper wall Mach number of 0.0001, corresponding to the fully Poiseuille case.
237

Micro-récupération d'énergie des écoulements d'air par conversion électrostatique / Electrostatic converters for airflow energy harvesting

Perez, Matthias 21 November 2016 (has links)
Ce travail de thèse s’inscrit dans la grande problématique de la récupération d’énergie. Il s’agit plus précisément de convertir de petites quantités d’énergie cinétique présentes dans un écoulement d’air en énergie électrique par l’intermédiaire d’un convertisseur électrostatique. L’énergie électrique convertie est ensuite destinée à alimenter des capteurs autonomes communicants pour le monitoring de structures, le suivi environnemental, le monitoring de santé…Le manuscrit comprend une étude des travaux antérieurs en récupération d’énergie des écoulements d’air, la compréhension physique des phénomènes de conversion électrostatique, de mécanique des fluides et d’aérodynamique à très faibles nombres de Reynolds, ainsi qu’une description des prototypes développés et des résultats expérimentaux obtenus.Les récupérateurs que nous avons développés se divisent en deux grandes catégories : (i) les récupérateurs rotatifs qui transforment l’énergie cinétique de l’air en énergie mécanique de rotation et (ii) les récupérateurs aéroélastiques qui puisent l’énergie cinétique du vent pour produire de l’énergie mécanique par oscillations périodiques. Ces deux types de récupérateurs ont été associés à des convertisseurs électrostatiques dédiés, polarisés par l’ajout d’électrets ou auto-polarisés par triboélectricité. Les récupérateurs d'énergie ont été optimisés et nous avons notamment montré l'intérêt de la conversion électrostatique pour des dispositifs de petites dimensions (quelques cm²) fonctionnant à faible vitesse (<3m/s). Les densités surfaciques de puissance atteignent 5µW/cm2@1m/s pour les récupérateurs rotatifs et de l'ordre de 10µW/cm2@10m/s pour les récupérateurs aéroélastiques. Les micro-générateurs ont finalement été combinés à des circuits de gestion d'énergie pour alimenter des capteurs autonomes communicants, validant la chaine complète de récupération d'énergie, montrant par la même occasion l'intérêt des circuits de gestion d'énergie actifs de type SECE (synchronous electric charge extraction) ou MPP (maximum power point). / This work is enshrined in the energy harvesting context. More specifically, the purpose is to convert small amounts of kinetic energy from airflows into electrical energy through an electrostatic converter. The electrical energy produced is then intended to supply low power sensors for structural health monitoring, environmental follow-up, human monitoring…The manuscript includes an overview of the state of the art on airflow energy harvesting, the physical understanding of electrostatic conversion phenomena, fluid mechanics, ultra-low Reynolds number aerodynamics, a description of the prototypes developed and the results obtained.The harvesters we have developed are divided into two families: (i) the rotational harvesters which transform the kinetic energy of airflows into mechanical energy of rotation and (ii) the aeroelastic harvesters which use wind energy to produce mechanical energy of periodical oscillations. These two types of harvesters have been associated to different electrostatic converters, polarized by the addition of electrets or self-polarized by triboelectricity. The energy harvesters have been optimized and we have demonstrated the benefit of the electrostatic conversion for small devices (a few cm2) operating at low speeds (<3m/s). The power densities reach 5µW/cm2@1m/s for rotational devices and in the range of 10µW/cm2@10m/s for aeroelastic devices. The micro-generators were finally combined with power management circuits to supply autonomous and communicating sensors. This last stage completes the energy harvesting chain and also shows the high benefit of active circuits (synchronous electric charge extraction, maximum power point).
238

Analyse aéroélastique d'une pale flexible composite : application au microdrone / Aeroelastic Analysis of Flexible Composite Proprotor Blades for Convertible Micro Air Vehicles

Mohd Zawawi, Fazila 18 September 2014 (has links)
The vision driving the work reported herein is to investigate the fluid-structure interac-tion (FSI) effects of the flexible laminated blades for tilt-body micro-air-vehicles (MAV)proprotors in hover and forward flight configurations. This is in order to exploit the po-tential of flexible-bladed proprotor over the rigid-bladed proprotor in the enhancementof proprotor performance during hovering and cruising at a target forward speed. Forthat, the FSI model taking into account the specific problems devoted to MAV-sizedproprotor made of laminate composite was developed. The FSI model combines aerody-namic model adapting Blade Element Momentum (BEM) theory and structural modeladapting Anisotropic Finite Element Beam (AFEM) theory. The aerodynamic model isdeveloped to be capable of adapting in the analysis on low Reynolds number proprotors.In the structural model, the blade is modeled as an elastic beam undergoing deflectionsin flap, lag, and torsion to capture the coupling effects in anisotropic materials, adaptsthe structural analysis on proprotor blades made of laminate composite. The reliabilityof the developed FSI model is verified through a validation on both aerodynamic andstructural models, separately, on several MAV-sized proprotors. As for a direction to theanalysis on passively-adaptive proprotor blades, an optimal design on actively-adaptiveproprotor was carried out. For this, a program for designing the optimum rigid blades atsingle-point (for either isolated cruise-point or isolated hover-point) and multiple-point(combined cruise and hover point) for proprotors have been developed. The proceduresin the optimal design program employs the numerical iterative inverse design method,based upon the minimum thrust induced losses (MIL). Even if the work in this thesiswas directed primarily towards the proprotor, however, the propulsion system from themotor part was not neglected since the propulsion efficiency is a crucial factor to the suc-cess of MAVs. A cheap and time-effective method of proposing the best motor from theselected commercial motors was developed, based on Taguchi’s method. The sensitivityof the total power consumption to the variation of value of each motor design variableswas also studied. The benefit of the use of tip body in the blade and the effect of bendingon the induced twist and on the thrust degradation, respectively, were also analyzed andidentified. Finally, the systematically designed passively-adaptive composite proprotors were evaluated under steady operating conditions. Hovering and cruise propulsive performance, characterized by total power Ptotal, were compared between the rigid-bladed and flexible-bladed proprotors. As a result of the comparison, the flexible-bladed proprotor with fixed system is found to be capable of slightly enhancing the performance through the reduction in Ptotal over its optimal rigid-bladed proprotor. / L’idée principale du travail rapporté ici est d’étudier les effets de l’intéraction fluide-structure (FSI) de pales laminées flexibles pour les proprotors de micro véhicules aériens(MAV) de type tilt-body dans les configurations de vol stationnaire et en avant. Eneffet, le but est d’exploiter les possibilités offertes par les proprotors à pales flexiblespar rapport aux proprotors à pales rigides pour améliorer leur performance dans cesphases de vol. Le modèle FSI a été développé à cet effet. Ce modèle tient compte desproblèmes spécifiques liés aux proprotors de MAV faits de composite laminé. Il com-bine l’adaptation de modèle aérodynamique par la théorie d’élement de pale (BEM) etl’adaptation de modèle structurel par la théorie des éléments finis de poutre anisotropes(AFEM). Le modèle aérodynamique est développé pour être capable de s’adapter àl’analyse des proprotors à bas nombres de Reynolds. Dans le modèle structural, la paleest modélisée comme une poutre élastique subissant des déviations dans la flexion, latraction et la torsion afin de capturer les effets de couplage de matériaux anisotropes.Il adapte l’analyse structurale des pales du proprotor faites de composite laminé. Lafiabilité du modèle FSI développé est vérifiée à travers une validation par modèles aéro-dynamique et structural, séparément, sur plusieurs proprotors de MAV. Afin de se dirigervers une analyse de pales de proprotors à adaptation passive , une recherche de designoptimal a été effectuée pour des proprotor à adaptation active. Pour cela, un programmepour la conception de pales rigides optimales à un unique point de fonctionnement (soitle vol de croisière soit le vol stationnaire) et à plusieurs points (combinant croisière etvol stationnaire) ont été développés. Les procédures du programme de design optimalemploient les mèthodes de design inverse par itération numérique, sur la base de pertesde poussée induites minimales (MIL). Même si le travail dans cette thèse a été dirigéprincipalement vers le proprotor, la partie moteur du système de propulsion n’a pasété négligée puisque l’efficacité de la propulsion est un facteur crucial pour le succès desMAVs. Une méthode simple et rapide de sélection du meilleur moteur parmi les moteurscommerciaux choisis est élaborée sur la base de la méthode de Taguchi. La sensibilitéde la consommation d’énergie totale à la variation de la valeur de chaque variable deconception du moteur a été étudiée. Le bénéfice de l’utilisation de la charge à la pointe de la pale et l’effet de la flexion sur la torsion induite et sur la dégradation de la poussée respectivement ont aussi été analysés et identifiés. Enfin, les proprotors à pales flexibles conçues systématiquement ont été évalués dans des conditions de fonctionnement stables. Performances en vol stationnaire et performances croisière propulsive, caractérisées par la puissance totale Ptotal ont été comparées entre les proprotors à pales rigides et à pales flexibles. En tant que résultat de la comparaison, les proprotors à pales flexibles s’avère capable d’améliorer légèrement les performances par la réduction de la Ptotal surson optimal proprotors à pales rigides.
239

Modeling and simulation of individual and collective swimming mechanisms in active suspensions / Modélisation et simulation des mécanismes individuels et collectifs de nage dans les suspensions actives

Delmotte, Blaise 21 September 2015 (has links)
Nous avons tou(te)s été témoins des nuages d'étourneaux dans le ciel ou de la formation de bancs de poissons dans l'océan. Ce type d'organisation chez les êtres vivant se produit aussi à des échelles parfois invisibles pour l'oeil humain: celles des micro-organismes. Les suspensions de micro-nageurs présentent une dynamique riche. Elles peuvent former des structures cohérentes résultant d'un mouvement collectif, mélanger le fluides environnant et/ou modifier ses propriétés rhéologiques. Leurs comportements peuvent jouer un rôle important dans la survie, l'équilibre des espèces, leur stratégie trophique et même pour la fertilité animale. La diversité des phénomènes observés résulte de l'interaction complexe entre mécanismes de nage, processus physiologiques, processus chimiques et interactions hydrodynamiques. Comprendre et maîtriser les mécanismes impliqués fait nécessairement appel la Mécanique des Fluides. Les études expérimentales permettent de mettre en exergue certains phénomènes et parfois de les expliquer. Cependant la modélisation s'avère indispensable. Or, inclure une description fine des mécanismes de nages dans une suspension contenant des milliers (voire des millions) d'individus, implique de considérer une vaste gamme d'échelles couplées (typiquement du micron 10^-6m au millimètre 10^-3m). Décrire une physique multi-échelles pour ce type problème reste un défi majeur pour la modélisation numérique actuelle. Ainsi, dans le cadre de cette thèse nous nous proposons d'apporter une contribution dans cette direction. Nous montrerons dans une premiere partie qu'il est possible de reproduire les mécanismes de nage de façon satisfaisante à l'échelle du micro-organisme avec des modèles de différentes complexités. Nous présenterons ensuite nos développements pour étendre ces modèles a l'échelle de la suspension. Nous montrerons comment inclure simultanément les effets Browniens qui agissent sur les plus petite particules (10^-6m). Enfin, nous exploiterons l'outil mis en place pour simuler des suspensions actives. Sa capacité à reproduire certains résultats de la littérature à précision égale, à moindre coût et à plus grande échelle, permet de combler le fossé entre modèles individuels, travaux expérimentaux et modèles continus issus de la théorie cinétique. Forts de cet outil, nous tenterons de répondre à deux questions ouvertes dans la littérature expérimentale : l'origine des corrélations d'orientation dans les suspensions de microgouttes auto-propulsées et les mécanismes en jeu dans la diffusion des particules Browniennes dans les suspensions actives. / We have all witnessed the flocking of starlings in the sky and the schools of fish that form in the ocean. This kind of organization of living creatures is not limited to those that we see, but also occurs for those that we don’t : swimming microorganisms. Suspen- sions of micro-swimmers exhibit a rich dynamics. Their behaviors can play an important role in the survival of the group, its development, the balance between species, their trophic strategies and even animal fertility. They can form coherent structures due to collective motion, mix the surrounding fluid or modify its rheological properties. Such diversity results from the complex interplay between swimming strategies, physiological processes, chemical reactions and hydrodynamic interactions. Fluid Mechanics is there- fore essential to understand and master the mechanisms involved in these phenomena. While experimental studies bring out new findings and, sometimes, provide physical ex- planations, modeling remains essential. Yet, including an accurate description of the micro-swimmers in a suspension containing thousands (nay millions) individuals, requires considering a wide range of coupled scales (from one micron 10^−6m to several millimeters 10^−3m). What happens on large scales depends on sophisticated mechanisms occurring two or three orders of magnitude below. Therefore, the multiscale modeling of such phenomena is still a major challenge for the state-of-the-art numerical methods. This thesis aims at providing a contribution in that direction. In a first part, we will show that reproducing swimming mechanisms at the scale of the micro-swimmer can be achieved with various models spanning different levels of complexity. We will then present our developments to incorporate these models in an efficient framework for large scale simulations. We will show how to simultaneously account for the Brownian motion of the smallest particles (10^−6m). Our code reproduces known results from the literature with the same accuracy, but at lower cost and at larger scales, thus bridging a gap between particle-based models, experiments and continuum formulations from kinetic theory. Using the capabilities afforded by our method, we eventually address two open problems in the experimental literature : the origins of orientational correla- tions between interacting self-propelled micro-droplets and the mechanisms at play in the nonlinear enhancement of Brownian particle diffusion in active suspensions.
240

Método da fronteira virtual aplicado em um problema de análise aeroelástica computacional / Virtual boundary method applied to a problem of computational aerolastic analysis

Antonio Carlos Henriques Marques 18 February 2011 (has links)
O estudo do comportamento de um perfil de uma seção aerolástica típica, com Reynolds na faixa de microaeronaves, constitui o principal foco deste trabalho, tomando como objetivo a estimativa de parâmetros do fenômeno de flutter. A pesquisa analisa o escoamento de um fluido sobre um corpo (cilindro e perfil de aerofólio) em estado estacionário e oscilante, em escoamento de velocidade constante, e, especificamente, o fenômeno de flutter. As equações de Navier-Stokes, com termo de força, são resolvidas pelo método da fronteira virtual para modelagem da interface escoamento/estrutura, representada pela geometria de um corpo de geometria complexa. Na discretização das equações governantes foi utilizado o método de diferenças finitas, sobre malhas deslocadas, com avanço temporal das velocidades do escoamento por meio de um esquema de Runge-Kutta de ordem 4. Os códigos computacionais, para as simulações das diretrizes e a lógica de cálculo, foram criados no contexto deste trabalho. A verificação foi feita através do método da solução manufaturada por meio de um problema fictício, que tem uma solução analítica conhecida, e que preenche as condições de contorno implementadas no código. O modelo da fronteira virtual é testado para os casos de escoamento sobre cilindro de base quadrada, cilindro de base circular e perfil de aerofólio tipo NACA0012, com malhas regular e não regular, e para condições estacionária e sob oscilação forçada. Foi estudado o comportamento de formação de vórtices, provocados por escoamento uniforme sobre o perfil de aerofólio, através dos coeficientes de arrasto, sustentação e pressão com visualização por meio da vorticidade e linhas de corrente, para vários ângulos de ataque e oscilação forçada com elevação e rotação em torno de um pivô posicionado no centro geométrico do perfil (50% da corda). Finalmente, é apresentada uma determinação numérica das características aeroelásticas para o perfil de aerofólio NACA0012, em escoamento de número de Reynolds ultra baixo (Re = 1.000), e parâmetros de flutter para um caso de baixa frequência de oscilação. / The behavior study of a profile of a typical aerolastic section, with Reynolds in range of micro aerial vehicle, is the main focus of this work, taking as objective the estimation of parameters of flutter phenomenon. The research analyzes of the flow of a incompressible fluid on a body (cylinder and airfoil profile) at steady state and oscillating with constant speed and, specifically, the flutter phenomenon. The Navier-Stokes equations, with force term, are solved by virtual boundary method for modeling interface flow/structure, represented by the geometry of a body of complex geometry. In discretization of the governing equations, the method of finite differences on staggered grid, with temporal advancement of discharge velocity through a Runge-Kutta of order 4. The computer codes, for simulations guidelines and logic calculation, were created in the context of this work. The verification was done by method ofmanufactured solution through a fictional problem, which has a known analytical solution, and satisfies the boundary conditions implemented in code. The model of the virtual boundary is tested for cases of flow over a square cylinder, circular cylinder and profile of a NACA0012 airfoil type, with regular and non-regular meshes, over stationary and forced oscillation conditions. We studied the behavior of vortex formation, caused by uniform flow over the airfoil profile, by the drag, lift and pressure coefficients with view through the vorticity and streamlines for various attack angles and forced oscillation with plunge and pich around a pivot witch was positioned at the geometric airfoil profile (half chord). Finally, it is presented a numerical determination of aeroelastic characteristics for the NACA0012 airfoil profile, flow under ultra low Reynolds number, and flutter parameters for a case of low oscillation frequency.

Page generated in 0.0693 seconds