• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 150
  • 24
  • 17
  • 11
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 73
  • 46
  • 39
  • 38
  • 34
  • 24
  • 23
  • 21
  • 19
  • 17
  • 17
  • 17
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Synthesis, characterization, and reactivity of technetium and rhenium complexes in intermediate oxidation states.

Trop, Harvey Stewart January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Includes bibliographical references. / Ph.D.
132

Direct atom transfer vs. ring expansion in reaction of rhenium oxo complexes with cyclooctene epoxides and episulfides

Khownium, Kriangsak 11 August 2003 (has links)
Graduation date: 2004
133

Cyanide clusters of ReII with 3d metal ions and their magnetic properties: incorporating anisotropic ions into metal-cyanide clusters with high spin magnetic ground states

Schelter, Eric John 29 August 2005 (has links)
Clusters of metal ions that possess large numbers of magnetically coupled unpaired electrons have attracted much interest in recent years due to their fascinating magnetic behavior. With an appreciable component of magnetic anisotropy, these large-spin paramagnetic molecules can exhibit an energy barrier to inversion of their magnetic dipole, leading to spontaneous magnetization and magnetic hysteresis below a critical temperature. Since this behavior is a property of an individual clusters rather than a collection of molecules, this phenomenon has been dubbed ??Single Molecule Magnetism??. Our approach to the study of new high-spin systems has been to exert a measure of synthetic control in the preparation of clusters. Specifically we are employing highly anisotropic metal ions with the anticipation that these ions would engender large overall magnetic anisotropy in the resulting clusters. The first step in this process was the development of the chemistry of two new d5 ReII (S = ??) complexes, namely [ReII(triphos)(CH3CN)3][PF6]2 and [Et4N][ReII(triphos)(CN)3]. The magnetic, optical and electrochemical properties were studied and theoretical models were developed to describe the origin of the large temperature independent paramagnetism that was observed. Next, we successfully employed transition metal cyanide chemistry using the ReII building blocks to prepare a family of isostructural, cubic clusters of the general formula {[MCl]4[Re(triphos)(CN)3]4} M = Mn, Fe, Co, Ni, Cu, Zn whose 3d ions adopt local tetrahedral geometries. Within the clusters, magnetic exchange is observed between the paramagnetic ions, which has been modeled using an Ising exchange model to account for the dominating anisotropy of the ReII ion. Despite the high pseudo-symmetry of the clusters (Td), this work has yielded a rare example of a metal-cyanide single molecule magnet, {[MCl]4[Re(triphos)(CN)3]4} with an S = 8 ground state, D = -0.39 cm-1 and an effective energy barrier for magnetization reversal of Ueff = 8.8 cm-1. The elucidation of this family of isostructural clusters has also allowed us to pursue fundamental work on the structure/property relationships of the exotic, paramagnetic ReII ion. As the clusters are soluble, stable compounds, the future of this chemistry lies in the development of a true building-block approach to ??super-clusters?? that exhibit very high ground state spin values.
134

Diimine complexes of ruthenium(ii), rhenium(i) and iron(ii): from synthesis to DFT studies

Kirgan, Robert A. 08 1900 (has links)
The chloro and pyridinate derivatives of rhenium(I) tricarbonyl complexes containing the diimine ligands 2,2’-bipyrazine (bpz) and 5,5’-dimethyl-2,2’-bipyrazine (Me2bpz) are discussed. When compared to similar rhenium(I) tricarbonyl complexes of 2,2’-bipyridine (bpy) and 2,2’-bipyrimidine (bpm), the Me2bpz complexes are comparable to bpm derivatives and their properties are intermediate between those of bpy and bpz complexes. Also discussed is the synthesis and properties of two new analogues of ruthenium(II) tris-bipyridine, a monomer and dimer. The complexes contain the ligand 6,6’-(1,2-ethanediyl)bis-2,2’-bipyridine (O-bpy) which contains two bipyridine units bridged in the 6,6’ positions by an ethylene group. Crystal structures of the two complexes formulated as [Ru(bpy)(O-bpy)](PF6)2 and [(Ru(bpy)2)2(O-bpy)](PF6)4 reveal structures of lower symmetry than D3 which affects the electronic properties of the complexes as revealed by Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT) calculations. Iron(II) tris-bipyrazine undergoes dissociation in solution with loss of the three bipyrazine ligands. The rate of the reaction in acetonitrile depends on the concentration of anions present in the solution. The rate is fastest in the presence of Cl- and slowest in the presence of Br-. In a second discussion DFT calculations are used to explore four iron(II) diimine complexes. DFT calculations show the higher energy HOMO (highest occupied molecular orbital) orbitals of the four complexes are metal centered and the lower energy LUMO (lowest unoccupied molecular orbitals) are ligand centered. / Dissertation(Ph.D.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Chemistry
135

Cyanide clusters of ReII with 3d metal ions and their magnetic properties: incorporating anisotropic ions into metal-cyanide clusters with high spin magnetic ground states

Schelter, Eric John 29 August 2005 (has links)
Clusters of metal ions that possess large numbers of magnetically coupled unpaired electrons have attracted much interest in recent years due to their fascinating magnetic behavior. With an appreciable component of magnetic anisotropy, these large-spin paramagnetic molecules can exhibit an energy barrier to inversion of their magnetic dipole, leading to spontaneous magnetization and magnetic hysteresis below a critical temperature. Since this behavior is a property of an individual clusters rather than a collection of molecules, this phenomenon has been dubbed ??Single Molecule Magnetism??. Our approach to the study of new high-spin systems has been to exert a measure of synthetic control in the preparation of clusters. Specifically we are employing highly anisotropic metal ions with the anticipation that these ions would engender large overall magnetic anisotropy in the resulting clusters. The first step in this process was the development of the chemistry of two new d5 ReII (S = ??) complexes, namely [ReII(triphos)(CH3CN)3][PF6]2 and [Et4N][ReII(triphos)(CN)3]. The magnetic, optical and electrochemical properties were studied and theoretical models were developed to describe the origin of the large temperature independent paramagnetism that was observed. Next, we successfully employed transition metal cyanide chemistry using the ReII building blocks to prepare a family of isostructural, cubic clusters of the general formula {[MCl]4[Re(triphos)(CN)3]4} M = Mn, Fe, Co, Ni, Cu, Zn whose 3d ions adopt local tetrahedral geometries. Within the clusters, magnetic exchange is observed between the paramagnetic ions, which has been modeled using an Ising exchange model to account for the dominating anisotropy of the ReII ion. Despite the high pseudo-symmetry of the clusters (Td), this work has yielded a rare example of a metal-cyanide single molecule magnet, {[MCl]4[Re(triphos)(CN)3]4} with an S = 8 ground state, D = -0.39 cm-1 and an effective energy barrier for magnetization reversal of Ueff = 8.8 cm-1. The elucidation of this family of isostructural clusters has also allowed us to pursue fundamental work on the structure/property relationships of the exotic, paramagnetic ReII ion. As the clusters are soluble, stable compounds, the future of this chemistry lies in the development of a true building-block approach to ??super-clusters?? that exhibit very high ground state spin values.
136

Growth, characterization, and properties of Co/Re superlattices

Charlton, Timothy R. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains x, 73 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 69-72).
137

Rhenium cyclized [alpha]-MSH analogs, somatostatin analogs and T-antigen avid peptides as imaging and therapeutic agents for tumor targeting

Cheng, Zhen, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
138

Rhenium cyclized [alpha]-MSH analogs, somatostatin analogs and T-antigen avid peptides as imaging and therapeutic agents for tumor targeting /

Cheng, Zhen, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
139

Design and syntheses of alkynylrhenium (I) tricarbonyl diimine complexes: from luminescence to metallogelformation, chemosensing, molecular architecture and light-harvesting

Lam, Siu-tung., 林肇東. January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
140

Crystal structure analysis of imido, nitrido and oxo complexes of rhenium (V), osmium (VI) and ruthenium (III) and some complexes oftrinuclear gold (I)

張碧玉, Cheung Pik-yuk, Christine. January 1991 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy

Page generated in 0.0551 seconds