Spelling suggestions: "subject:"achenium"" "subject:"arrhenium""
141 |
Automation of CVI equipment for laminated matrix composite fabricationKing, Harry C., III 08 1900 (has links)
No description available.
|
142 |
Polymers with pendant transition metal complexes for photovoltaic applications and nanofabricationsCheng, Kai-wing. January 2008 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2008. / Also available in print.
|
143 |
Crystal structure analysis of imido, nitrido and oxo complexes of rhenium (V), osmium (VI) and ruthenium (III) and some complexes of trinuclear gold (I) /Cheung Pik-yuk, Christine. January 1991 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1992.
|
144 |
Syntheses, photophysics and photochemistry of surfactant rhennium (I) complexes, potential applications as functional materials for second-harmonic generation, photoswitching and liquid crystals /Yang, Yu, January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 280-300).
|
145 |
Preparation, reactivities and oxidative catalytic activities of ruthenium(II) polypyridines, rhenium(I) carbonyl complexes and ruthenium-encapsulated meso- and micro-porous molecular sieves /Cheng, Kar-wai, Anita. January 1998 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 307-320).
|
146 |
Chemical Transformations Supported by the [Re₆(μ₃-Se)₈]²⁺ Cluster CoreCorbin, William C. January 2015 (has links)
Hexanuclear transition metal clusters are a distinct class of chemical compounds that have some very interesting chemical and physical properties. Of recent interest in this field has been the [Re₆(μ₃-Se)₈]²⁺ cluster core. This Lewis acidic cluster core contains six substitutable coordination sites, and site differentiation can be accessed through protecting group ligands. The Lewis acidity has been shown to activate unsaturated cluster-bound ligands, and the expanded atom-like structure and high symmetry of the cluster core has potential use in synthesizing some fascinating and novel hybrid materials. Little work has been performed in establishing the scope of these chemical transformations. The work herein describes the efforts and successes of such work. Chapter 1 provides the essential background required for understanding the [Re₆(μ₃-Se)₈]²⁺ cluster core's synthesis, properties, and currently known research directions and successes. This chapter first introduces hexanuclear clusters in a general format, then focuses on the established catalytic and material capabilities that have been determined using this specific cluster core. Chapter 2 discusses the synthesis, characterization, and hydrogen-bonded assemblies formed from [Re₆(μ₃-Se)₈]²⁺ cluster-isonicotinic acid cluster complexes. These complexes have potential uses as hybrid inorganic/organic linkers for the generation of luminescent Lewis acidic metal-organic frameworks (MOFs). Prospective applications of such materials include catalysis, separations, and gas storage. Chapter 3 focuses on the novel chemistry of [Re₆(μ₃-Se)₈]²⁺ cluster-activated CH₃CN with N-based nucleophiles to form acetamidines. These ligands are of interest due to their use in medicinal chemistry, CO₂/CS₂ sequestration, and the formation of synthetically-relevant species. Quantitative yields are obtained and single-crystal XRD analyses reveal specific stereochemical outcomes. Trifluoroacetic acid (TFA) in a cluster-amidine CH₃CN solution removes the ligand as the acetamidinium TFA salt, and the starting cluster solvate is reproduced making a recyclable catalyst. Chapter 4 expands on a project similar to that of chapter 3, except that O-based nucleophiles are utilized for specific cluster isomers. The newly formed ligands, imino esters, are of interest in organic synthesis as valuable starting materials for the generation of β-lactams and heterocycles. ³¹P NMR and single–crystal XRD reveal Z stereochemistry is preferred in the cis isomer, but conflicting results for the hexasubstituted isomer leave stereochemical analyses unresolved. Chapter 5 attempts to incorporate the chemistry established in chapters 2-4 to provide some fresh and interesting research outlooks possible with the [Re₆(μ₃-Se)₈]²⁺ cluster core. Incorporation of the cluster into MOFs is discussed, and the possibility of post-synthetic modifications for metal sequestration, catalysis, and sensing is explained. Appendix A provides all the NMR data obtained for synthesized materials with peak picks and integrations provided. Appendix B entails all crystallographic information for structures determined after syntheses. Appendix C provide high-resolution mass spectra.
|
147 |
Anionic polyhydride compounds of the transition metalsBerry, Adam January 1987 (has links)
No description available.
|
148 |
Estudos de marcação do etidronato com sup(188)Re proveniente de diferentes gerações de sup(188)W/sup(188)ReMARCZEWSKI, BARBARA S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:52:29Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:22Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
149 |
Desenvolvimento da tecnologia de preparo de geradores de sup(188)W-sup(188)ReOLIVEIRA, ALEXANDRE de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:49:34Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:34Z (GMT). No. of bitstreams: 1
09995.pdf: 3401015 bytes, checksum: aced83202c3f7ecb0a8933fda0aed0aa (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
|
150 |
Estudo comparativo da marcacao do anticorpo anti-CD20 com sup(188)Re / Comparative studies of antibody anti-CD20 labeled with 188ReDIAS, CARLA R. de B.R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:27:22Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:35Z (GMT). No. of bitstreams: 0 / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
Page generated in 0.0454 seconds