• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of PspE, a Secreted Sulfurtransferase of Escherichia coli

Cheng, Hui 22 May 2003 (has links)
PspE, encoded by the last gene of the phage shock protein operon, is one of the nine proteins of Escherichia coli that contain a rhodanese homology domain. PspE is synthesized as a precursor with a 19-amino acid signal sequence and secreted to the periplasm. Mature PspE is the smallest rhodanese of E. coli (85 amino acids) and catalyzes the transfer of sulfur from thiosulfate to cyanide forming thiocyanate and sulfite. Cation exchange chromatography of a freeze-thaw extract of a PspE-overexpressing strain yielded two major peaks of active, homogeneous PspE. The two peaks contained two forms of PspE (PspE1 and PspE2) of distinct size and/or charge that were distinguished by native polyacrylamide gel electrophoresis and gel chromatography. PspE2 was converted to the more compact PspE1 by treatment with thiosulfate, which suggested that PspE1 is the persulfide form. One equivalent of cyanizable sulfur was associated with PspE1, with much less present in PspE2. Consistent with the conclusion that the single active site cysteine of PspE1 contains a persulfide sulfur was the observation that this form was much more tolerant to chemical inactivation by thiol-specific modifying reagent DTNB (5,5′-dithiobis(2-nitrobenzoic acid)). Rhodanese activity was subject to inhibition by anions (sulfite, sulfate, chloride, phosphate and arsenate), suggesting PspE has a cationic site for substrate binding. Kinetic analysis revealed that PspE employs a double-displacement mechanism, as is the case for other rhodaneses. The Kms for SSO32- and CN- were 3.0 and 43 mM, respectively. PspE exhibited a kcat of 72 s-1. To aid in understanding the physiological role of PspE, a strain with a pspE gene disruption was constructed. Comparison of rhodanese activity in extracts of wild-type and mutant strains revealed that PspE is a major contributor of rhodanese activity in E. coli. The pspE mutant displayed no obvious growth defect or auxotrophies, and was capable of molybdopterin biosynthesis, indicating that pspE is not essential for production of sulfur-containing amino acid or cofactors. Growth of wild-type and mutant strains deficient in pspE and other sulfurtransferase paralogs in medium with cyanide or cadmium was compared. The results indicated that neither PspE nor other E. coli rhodanese paralogs play roles in cyanide or cadmium detoxification. The physiological role of PspE remains to be determined. / Master of Science
2

Biochemical and genetic characterization of mercaptopyruvate sulfurtransferase and paralogous putative sulfurtransferases of Escherichia coli

Jutabha, Promjit 25 June 2001 (has links)
Sulfurtransferases, including mercaptopyruvate sulfurtransferase and rhodanese, are widely distributed in living organisms. Mercaptopyruvate sulfurtransferase and rhodanese catalyze the transfer of sulfur from mercaptopyruvate and thiosulfate, respectively, to sulfur acceptors such as thiols or cyanide. There is evidence to suggest that rhodanese can mobilize sulfur from thiosulfate for in vitro formation of iron-sulfur clusters. Additionally, primary sequence analysis reveals that MoeB from some organisms, as well as ThiI of Escherichia coli, contain a C-terminal sulfurtransferase domain. MoeB is required for molybdopterin biosynthesis, whereas ThiI is necessary for biosynthesis of thiamin and 4-thiouridine in transfer ribonucleic acid. These observations led to the hypothesis that sulfurtransferases might be involved in sulfur transfer for biosynthesis of some sulfur-containing cofactors (e.g., biotin, lipoic acid, thiamin and molybdopterin). Results of a BLAST search revealed that E. coli has at least eight potential sulfurtransferases, besides ThiI. Previously, a glpE-encoded rhodanese of E. coli was characterized in our laboratory. In this dissertation, a mercaptopyruvate sulfurtransferase and corresponding gene (sseA) of E. coli were identified. In addition, the possibility that mercaptopyruvate sulfurtransferase could participate or work in concert with a cysteine desulfurase, IscS, in the biosynthesis of cofactors was examined. Cloning of the sseA gene and biochemical characterization of the corresponding protein were used to show that SseA is a mercaptopyruvate sulfurtransferase of E. coli. A strain with a chromosomal insertion mutation in sseA was constructed in order to characterize the physiological function of mercaptopyruvate sulfurtransferase. However, the lack of SseA did not result in a discernable phenotypic change. Redundancy of sulfurtransferases in E. coli may prevent the appearance of a phenotypic change due to the loss of a single sulfurtransferase. Subsequently, other paralogous genes for putative sulfurtransferases, including ynjE and yceA, were cloned. Strains with individual deletions of the chromosomal ynjE and yceA genes were also constructed. Finally, strains with multiple deficiency in potential sulfurtransferase genes, including sseA, ynjE and glpE, as well as iscS, were created. However, no phenotype associated with combinations of sseA, glpE and/or ynjE deficiency was identified. Therefore, the physiological functions of mercaptopyruvate sulfurtransferase and related sulfurtransferases remain unknown. / Ph. D.
3

Characterization of two novel proteins containing the rhodanese homology domain: YgaP and YbbB of Escherichia coli

Ahmed, Farzana 22 August 2003 (has links)
Rhodanese homology domains are ubiquitous structural modules found in eubacteria, eukaryotes and archaea. The rhodanese homology domain may comprise the entire structure of a protein. Alternatively it is found as tandemly repeated modules in which the C-terminal domain displays the properly structured active site. Finally it is found as a member of many multidomain proteins. Although some members of this family of proteins show sulfurtransferase activity in vitro, their specific physiological functions remain largely undefined. Fusion of a rhodanese domain to different protein domains of known or unknown functions provides important clues to the diverse roles for these proteins. Nine proteins containing the rhodanese homology domain are predicted in Escherichia coli. In this work, two of these proteins: YgaP and YbbB were characterized using bioinformatics, biochemical and genetic approaches. YgaP is a single domain rhodanese that is predicted to contain an amino-terminal rhodanese domain (118 amino acids) and a hydrophobic carboxy-terminal domain (56 amino acids). The ygaP gene was cloned into a vector that directed overexpression of a membrane-associated rhodanese activity. The cellular location of YgaP was determined by using sucrose density layer ultracentrifugation. YgaP and rhodanese activity co-sedimented with the cytoplasmic membrane marker D-lactate dehydrogenase, and was not present in the outer membrane fractions, indicating YgaP is a cytoplasmic membrane protein. A polyhistidine-tagged variant of YgaP was subsequently solubilized from the membrane by detergent extraction and purified by metal chelate chromatography. Similar to the other characterized rhodaneses, purified YgaP-His6 as well as the membrane-associated native form of the protein displayed a double displacement (ping-pong) mechanism. YgaP is unique in that it is the first membrane-associated rhodanese to be described. To understand the physiological role of YgaP, a strain with ygaP gene disruption was constructed. No obvious phenotype resulted from deletion of ygaP. The ybbB gene of E. coli has an interesting genome organization in several Gram-negative bacteria including Pseudomonas aeruginosa and Azotobacter vinelandii where it is predicted to be in the same operon with selD, encoding selenophosphate synthetase. Thus the role of YbbB in selenium metabolism was investigated. A strain with ybbB gene deletion was constructed and tested for its ability to incorporate 75Se into tRNA and protein. It was shown that the disruption of ybbB prevented specific incorporation of selenium into tRNA but not into proteins in vivo. The modified nucleoside missing in tRNAs of the DybbB strain was identified as 5-methylaminomethyl-2-selenouridine (mnm5se2U), which has previously been shown to be present in the wobble position of the anticodon of E. coli tRNAsLys, Glu and Gln. Data from HPLC analysis showed that the deletion of ybbB did not affect the production of 5-methylaminomethyl-2-thiouridine (mnm5s2U), the precursor to mnm5se2U, suggesting that YbbB is not required for sulfur transfer but is rather involved in selenation of tRNAs. YbbB was subsequently expressed with a C-terminal histidine tag and purified for initial characterization. Purified YbbB-His6 migrated as a 43 kDa monomer under denaturing conditions and displayed spectral properties that suggested its interaction with tRNA. Finally, it was shown that Cys97, which aligns with the active site cysteine of rhodanese and is conserved in all known YbbB homologs, is required for YbbB activity. However, Cys96, which is not conserved, is not required for activity. / Ph. D.
4

Charakterisierung der Funktion der Rhodanese YnjE für die Molybdänkofaktor Biosynthese in Escherichia coli / Characterization of the Rhodanese YnjE regarding Molybdenum Cofaktor Biosynthesis in E. coli

Urban, Alexander January 2008 (has links)
Die ubiquitär verbreitete Molybdänkofaktorbiosynthese ist in Escherichia coli (E. coli) bisher am umfassendsten untersucht. Bislang war jedoch nicht bekannt, welche physiologische Schwefelquelle im zweiten Schritt dieses Syntheseweges zur Bildung der charakteristischen Dithiolengruppe genutzt wird. Erste Untersuchungen deuteten auf eine der Cysteindesulfurasen E. colis hin, welche in Verbindung mit einem rhodaneseähnlichen Protein den Schwefel in Form eines Persulfids übertragen. Ähnliche Mechanismen wurden bereits in der humanen Moco-Biosynthese und der Thiaminbiosynthese identifiziert. In dieser Arbeit wurde das E. coli Protein YnjE näher charakterisiert. Es handelt sich bei YnjE um ein rhodaneseähnliches Protein aus drei Rhodanesedomänen. Durch Proteinkristallisation und anschliessender Röntgenstrukturanalyse wurde die Tertiärstruktur des YnjE-Proteins analysiert. Die hergestellten Kristalle konnten zur Gewinnung von Strukturdaten vermessen und eine Proteinkristallstruktur für YnjE berechnet werden. Desweiteren besitzt YnjE ein N-terminales Typ I Sekretionssystem abhängiges Sipnalpeptid. Durch Lokalisieungsexperimente wurde die Bedeutung des Signalpeptids für das YnjE-Protein untersucht. Dabei wurde festgestellt, dass endogenes YnjE sowohl im peri- als auch im cytoplasmatischen Raum lokalisiert ist. Auf Grund von vorhergehenden Studien, wurde eine Funktion des YnjE-Proteins innerhalb der Molybdänkofaktorbiosynthese in der Schwefelübertragung auf das Protein MoaD in E. coli vermutet und deshalb in dieser Arbeit näher untersucht. Es wurde eine Interaktion des YnjE-Proteins mit dem MoeB-Protein, welches für die Thiocarboxylierung des MoaD-Proteins essentiell ist, durch Tandem-Affinitätsreinigung und Antikörper-basierte Affinitätsreinigung nachgewiesen und ein signifikanter positiver Einfluss YnjEs auf die Bildung von Molybdopterin, einer Vorstufe des Molybdänkofaktors, bestätigt. Dabei wurde sowohl der Sulfurierungsgrad des MoaD-Proteins in YnjE und Cysteindesulfurase-knock-out Mutanten untersucht, als auch die Bildung von Molybdopterin in einem in vitro Ansatz in Abhängigkeit von steigenden YnjE-Konzentrationen analysiert. Im Ergebnis kann man daraus schließen, dass der Mechanismus der Schwefelübertragung ähnlich der Thiaminbiosynthese, über eine der drei Cysteindesulfurasen CsdA, SufS oder IscS geschieht, welche Schwefel in Form eines Persulfids auf YnjE übertragen können. Thiosulfat und Mercaptopyruvat, die Substrate für die beiden Familien der rhodaneseähnlichen Proteine, Thiosulfat-Sulfurtransferasen und Mercaptopyruvat-Sulfurtransferasen, dienen nicht als Substrate für eine Persulfurierung YnjEs. Durch eine Austauschmutante des Cysteinrestes der aktiven Schleife von YnjE konnte nicht bestätigt werden, dass dieser Aminosäurerest und damit die Bildung eines YnjE-gebundenen Persulfids für die positive Beeinflussung der MPT-Synthese essentiell ist. Vielmehr kann durch diese Arbeit von einer Vermittlung der Interaktionen zwischen MoeB, IscS und der MPT-Synthase durch YnjE ausgegangen werden wobei die Cysteindesulfurase IscS den Schwefel für die Thiocarboxylierung des MoaD-Proteins liefert. / The rhodanese-like protein YnjE was characterized in this study. After protein christallization the stucture of the YnjE protein was analyzed. Subzellular localization experiments revealed, that the YnjE protein is present both in cytoplasm and periplasm. Interaction studies and in vitro synthesis of Molybdopterin revealed an influence of YnjE on Molybdenum Cofactor Biosynthesis.A sulfur transfer from L-Cystein to YnjE by a Cystein desulfurase was not responsible for the the effects on Molybdenum Cofaktor Biosynthesis, since a YnjE cysteine 385 to alanine mutant showed the same effect on Molybdenum Cofaktor Biosynthesis.
5

Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis

Hunt, Jeremy Paul 25 August 2004 (has links)
Sulfur-containing compounds such as thiamin, biotin, molybdopterin, lipoic acid, and [Fe-S] clusters are essential for life. Sulfurtransferases are present in eukaryotes, eubacteria, and archaea and are believed to play important roles in mobilizing sulfur necessary for biosynthesis of these compounds and for normal cellular functions. The rhodanese homology domain is a ubiquitous structural module containing a characteristic active site cysteine residue. Some proteins containing a rhodanese domain display thiosulfate:cyanide sulfurtransferase activity in vitro. However, the physiological functions of rhodaneses remain largely unknown. YrkF, the first rhodanese to be characterized from Bacillus subtilis, is a unique protein containing two domains, an N-terminal Ccd1 domain and a C-terminal rhodanese domain. Ccd1 (conserved cysteine domain 1) is a ubiquitous structural module characterized by a Cys-Pro-X-Pro sequence motif. Thus, YrkF contains two cysteine residues (Cys¹⁵ and Cys¹⁴⁹), one in each domain. Biochemical, genetic, and bioinformatic approaches were used in order to characterize YrkF. First, YrkF was overexpressed and assayed for rhodanese activity to show that the protein is a functional rhodanese. A variant protein, YrkF<sup>C15A</sup>, containing a cysteine to alanine substitution in the Ccd1 domain was created to determine if the Ccd1 cysteine is essential for rhodanese activity. The variant protein was overexpressed and rhodanese assays showed that YrkF<sup>C15A</sup> is also a functional rhodanese. Inherent structural and catalytic differences were observed when comparing YrkF and YrkF<sup>C15A</sup>, which may reflect the importance of the Ccd1 cysteine residue to normal enzymatic function and structural stability. Initial kinetic studies identified differences in activity between YrkF and YrkF<sup>C15A</sup>. Cross-linking experiments showed a propensity for the formation of inter- and intramolecular disulfide bonds between the two cysteine residues and indicated that Cys¹⁵ and Cys¹⁴⁹ are located near one another in the 3-dimensional structure of the protein. Analysis of the proteins by mass spectrometry suggested YrkF contains a stable persulfide sulfur, whereas YrkF<sup>C15A</sup> showed no evidence of a stable persulfide sulfur and was prone to oxidation and other active site modifications. A homology model of YrkF was created using structures of a rhodanese homolog and a Ccd1 homolog as templates. The model was used to predict the structure of YrkF based on the results of the cross-linking experiments. A strain containing a yrkF chromosomal deletion could be constructed, indicating YrkF is not essential for survival. Phenotypic analysis of the yrkF mutant revealed that YrkF is not needed for biosynthesis of sulfur-containing cofactors (thiamin, biotin, molybdopterin, or lipoic acid) or amino acids. The characterization of YrkF could lead to the discovery of novel physiological roles for rhodaneses and may give insight into possible roles for the Ccd1 module. / Master of Science
6

Genetic mapping of nuclear suppressors of splicing-deficient chloroplast introns, and a novel rhodanese-domain protein required for chloroplast translation in Chlamydomonas

Luo, Liming, 1967- 27 January 2011 (has links)
Although many group I (GI) introns can self-splice in vitro, their splicing is promoted by proteins in vivo. Only a few splicing factors that specifically promote GI intron splicing have been identified, however, none are from chloroplasts, which is the subject of this study. In previous work from our lab, a strategy was developed to identify splicing factors for chloroplast GI introns of Chlamydomonas by using suppressor genetics. A mutant with reduced splicing of the chloroplast 23S rRNA intron (Cr.LSU) was generated. Then, 3 nuclear suppressors (7120, 71N1 and 7151) with substantially restored splicing of Cr.LSU were isolated and partially characterized. However, the suppressor gene(s) were not identified. In this study, I have used genetic mapping to make a renewed attempt to isolate these genes. Using polymorphisms between the 137C strain that was used for suppressor isolation, and a new strain of C.reinhardtii (S1D2), the nuclear suppressor mutations in 7120 and 71N1 were mapped to a region on chromosome III that is essentially devoid of recombination. Based on the recombination maps, the suppressor gene in 7120 is located within a ~418-kb region from bp 2,473,064 to 2,891,232, whereas the suppressor in 71N1 is likely located within a ~236-kb subregion from bp 2,473,064 to 2,709,377. It is possible that these mutations are in the same gene; however, the maps could not be refined further due to the lack of recombination in this 418-kb region. I also attempted to compare the genomic sequence of the 7120 suppressor, which was obtained by next-generation sequencing, with the Chlamydomonas reference genome (JGI, v.4). Next-generation sequencing of 7120 revealed the existence of abundant repetitive sequences and transposable elements clustered in a ~40-kb subregion of the recombinationally suppressed 418-kb region on chromosome III. I suggest that the high frequency of repetitive sequences and transposable elements in this region may be the reason for the suppressed recombination. Searching for candidate genes in the mapped region led me to examine a novel protein that was predicted to have a putative chloroplast transit-peptide, and an RNA binding domain. Further bioinformatic analysis revealed a single rhodanese domain with an active-site cysteine. The protein was expressed in E.coli as the full-length and predicted mature forms, plus a small His-tag. The purified mature protein had rhodanese catalytic activity, based on the fact that it was able to transfer sulfur from thiosulfate to cyanide. Also, western blot analysis with a polyclonal antibody produced in rabbits showed that the cellular protein migrated on SDS gels close to the mature protein and faster than the full-length protein, indicative of an organelle-targeted protein. The antibody also showed that the cellular protein co-fractionated with chloroplasts. To gain insight into its in vivo function, the gene was knocked down using the tandem RNAi system (Rohr et al., 2004), which produced strains (5) with reductions of 31% to 76% in the mRNA level, and ~30% to ~60% in the protein level. These strains were sensitive to bright light, and had reduced rates of growth under all conditions, which are characteristics of chloroplast translation mutants. Thus, chloroplast protein synthesis was examined by radioisotope pulse-labeling in the presence of cycloheximide, which showed that the RNAi strains were broadly and negatively affected, and RT-PCR and northern blot revealed only normal chloroplast mRNA levels. These data have identified a new rhodanese-family enzyme that is required for chloroplast translation, which I have designated “CRLT”, for chloroplast rhodanese-like translation. / text
7

Optimisation du métabolisme énergétique du soufre chez la bactérie hyperthermophile Aquifex aeolicus.

Aussignargues, Clement 17 December 2012 (has links)
Le soufre est utilisé à des fins bioénergétiques par des micro-organismes tels que la bactérie hyperthermophile Aquifex aeolicus qui nécessite pour sa croissance de l'oxygène, de l'hydrogène et un composé soufré indispensable. Une soufre réductase réduisant des chaînes de soufre, une Sulfure Quinone Oxydoréductase (SQR) oxydant l'H2S et une Soufre Oxygénase Réductase (SOR) oxydant et réduisant simultanément des chaînes de soufre ont été caractérisées chez cette bactérie. L'organisation de certaines de ces enzymes dans des supercomplexes membranaires a également été démontrée.Nous avons montré qu'Aq_477, précédemment caractérisée comme une soufre transférase de la famille des rhodanèses, est capable (i) de « charger » des chaînes de soufre ; (ii) d'interagir avec deux partenaires (la soufre réductase et la SOR) ; (iii) de leur présenter ce substrat. Ceci conduit à une optimisation du métabolisme. Nous avons ainsi démontré l'implication directe d'Aq_477, rebaptisée SbdP pour Sulfur -binding -donating Protein, dans le métabolisme énergétique du soufre de la bactérie. Une analyse poussée du génome nous a permis de construire un nouveau modèle suggérant notamment un recyclage des composés soufrés entre différents systèmes enzymatiques. La recherche de l'existence d'un niveau d'organisation des complexes respiratoires supérieur aux supercomplexes chez Aquifex aeolicus nous a conduits à développer de nouvelles méthodes d'étude permettant de proposer plusieurs pistes de recherche. Enfin, nous avons montré l'existence d'un nanocompartiment protéique constitué de l'encapsuline Aq_1760, dans lequel vient s'ancrer la ferritine atypique à domaines en tandem Aq_331. / Sulfur can be used in energy metabolism by microorganisms as electron donor and acceptor. The hyperthermophilic bacterium Aquifex aeolicus, which need oxygen, hydrogen and an essential sulfur compound for its growth presents sulfur reduction and oxidation pathways linked to the energy synthesis. A sulfur reductase (reduction of sulfur chains), a Sulfide Quinone Oxidoreductase (SQR, oxidation of H2S) and a Sulfur Oxygenase Reductase (SOR, simultaneous oxidation and reduction of sulfur chains) have been characterized in this bacterium. It has also been shown that some of these enzymes are organized in membrane-bound supercomplexes.We have demonstrated that Aq_477, previously characterized as a sulfurtransferase belonging to the rhodanese superfamily, can load long sulfur chains and acts as a sulfur donor for its partners (sulfur reductase and SOR) which use these sulfur chains as substrate, thus optimizing the metabolism. These results show that Aq_477, renamed SbdP for Sulfur -binding -donating Protein, is involved in the sulfur energy metabolism of Aquifex aeolicus. The identification in the genome of some new proteins potentially involved in this metabolism permitted us to propose a new model which suggests a recycling of sulfur compounds between different enzymatic systems. We also looked for an organization level of respiratory complexes higher than supercomplexes, which led us to develop new study methods and propose several research trails. Finally, we have shown the existence of protein nanocompartment constituted by the encapsulin Aq_1760, in which the atypical tandem-domain ferritin Aq_331 is anchored.

Page generated in 0.0373 seconds