• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeted mutagenesis and functional analysis of CWC25 Splicing Factor in Rice via CRISPR/Cas9

Kababji, Ahad M. 11 1900 (has links)
Pre-mRNA splicing is the most critical process in gene expression regulation across eukaryotic species. This reaction is carried out by the spliceosome, a large, dynamic, and well-organized ribonucleoprotein complex. The spliceosome is composed of five major small nuclear RNAs and an excessive number of associated protein factors. Many protein splicing factors bind and release during splicing to assist the assembly and the modulation of many RNA structures and proteins within the spliceosome. CWC25 is a splicing protein factor that functions in modulating the conformational structure of the spliceosome at the first transesterification reaction. CWC25 binds with its N-terminus to the major groove of the catalytic spliceosome triggering the spliceosome activity. Here, we employed CRISPR/Cas9 genome engineering system for targeted mutagenesis to generate CWC25 functional knock-out mutants to understand its molecular function, contribution to splicing regulation and implication in fine-tuning responses to abiotic stress in rice. Our genotyping analysis of the OsCWC25 locus revealed the presence of two mono-allelic and 18 bi-allelic mutant lines. Phenotypic analysis of these mutants, including germination and root inhibition assays, showed that the cwc25 mutants are oversensitive to abiotic stresses such as ABA and salinity. Our data demonstrate that CWC25 plays an important role in regulating plant responses to abiotic stresses.
2

Etude du rôle des facteurs d'épissage à domaines UHM dans la régulation de l'épissage alternatif / Study of the role of UHM splicing factors in the regulation of alternative splicing

Tari, Manel 17 December 2018 (has links)
Les protéines U2AF65, CAPERα, PUF60 et SPF45 sont des facteurs d'épissage qui possèdent des domaines similaires appelés UHM et qui interagissent pendant les étapes précoces de l'épissage avec des protéines qui possèdent des domaines ULM, comme SF3b155. Par des approches biochimiques, nous avons mis en évidence la formation d'assemblages macromoléculaires par U2AF65 et CAPERα au contact du domaine multi-ULM de SF3b155. En diminuant les taux d'expression des facteurs d'épissage à domaines UHM avec des shRNA et en analysant par qPCR l'épissage de 65 exons cassette, nous avons identifié un rôle activateur de CAPERα, U2AF65 et PUF60 et un rôle répresseur de SPF45 dans l'épissage. Plus particulièrement, CAPERα et U2AF65 activent l'épissage des exons cassette présentant des séquences flanquantes en 5' riches en motifs polypyrimidine. De plus, ces séquences favorisent la formation des assemblages macromoléculaires de U2AF65 et CAPERα. Appuyés par ces résultats, nous proposons un modèle dans lequel des interactions multivalentes conduisent à la formation d'assemblages macromoléculaires par CAPERα et U2AF65 ; ces complexes ont une affinité particulière d'une part pour les séquences introniques riches en motifs polypyrimidine et d'autre part avec le domaine multi-ULM de SF3b155. L'ensemble de ces interactions favorise la reconnaissance des sites 3' d'épissage. / U2AF65, CAPERα, PUF60 and SPF45 are splicing factors that hold similar domains called UHM that interact during the early splicing steps with ULM domains proteins, such as SF3b155. Using biochemical approaches, we highlighted the formation of macromolecular assemblies by U2AF65 and CAPERα in contact with the multi-ULM domain of SF3b155. The inhibition of the expression of the UHM splicing factors by shRNA, followed by a qPCR analysis of 65 cassette exons led us to identify an activating role of CAPERα, U2AF65 and PUF60 and a repressing role of SPF45 in splicing. Particularly, CAPERα and U2AF65 activate splicing of cassette exons presenting long pyrimidine-rich 5' flanking regions. Moreover, these regions favor the formation of macromolecular assemblies of U2AF65 and CAPERα. On the basis of these results, we propose a model in which multivalent interactions lead to CAPERα and U2AF65 macromolecular assemblies; these assemblies present a particular affinity on one hand for long pyrimidine-rich introns and on the other one for the multi-ULM domain of SF3b155. All these interactions promote 3' splice sites recognition.
3

Investigating the RNA Binding Domains of MBNL1 and the Alternative Splicing Motifs They Recognize

Purcell, Jamie, Purcell, Jamie January 2012 (has links)
Muscleblind-like 1 (MBNL1) is a ubiquitously expressed RNA binding protein that regulates the alternative splicing of a variety of transcripts. In Myotonic Dystrophy (DM) aberrant cellular localization of MBNL1 results in disease-associated mis-splicing of several MBNL1 target pre-mRNAs. Due to its role in DM pathogenesis, MBNL1 has been a topic of intense study for the last decade, however many open mechanistic questions remain regarding how MBNL1 recognizes RNA substrates to mediate splicing. The RNA recognition motif for MBNL1, 5'-YGCY-3', was defined herein. This motif was used to identify novel MBNL1 binding sites within regulated transcripts and create synthetic MBNL1-regulated splicing reporters. MBNL1 contains four zinc finger (ZF) RNA binding domains arranged into two pairs of two ZFs. A comprehensive, combinatorial mutagenic study of MBNL1 was conducted to determine the role of each ZF in RNA binding and splicing activity. Functional analysis of the mutant proteins in cellular splicing assays and assessment of RNA binding activity demonstrated that the ZF pairs (i.e. ZF1-2 or ZF3-4) do not have equivalent activity. The ZF1-2 pair is responsible for MBNL1's high affinity RNA binding and splicing activity, whereas the ZF3-4 pair has reduced affinity for RNA and impaired ability to regulate splicing of some transcripts. Hierarchical clustering analysis revealed that two distinct classes of MBNL1-regulated splicing events exist within the small set of splicing events examined. For Class II splicing events the binding and splicing activity for the ZF mutants correlated well. However, for Class I events there was no significant correlation between RNA binding and splicing activity. For pre-mRNAs in the latter class it appears that MBNL1 exerts surprisingly robust splicing activity in the absence of strong RNA binding, suggesting that MBNL1 may be recruited to some pre-mRNA substrates through protein-protein interactions. This study provides the first demonstration that functionally distinct classes of MBNL1-mediated splicing events exist in terms of requirements for different ZFs and the importance of RNA binding. This dissertation includes previously published and unpublished co-authored material as well as recently co-authored material that has been submitted for publication.
4

Genetic mapping of nuclear suppressors of splicing-deficient chloroplast introns, and a novel rhodanese-domain protein required for chloroplast translation in Chlamydomonas

Luo, Liming, 1967- 27 January 2011 (has links)
Although many group I (GI) introns can self-splice in vitro, their splicing is promoted by proteins in vivo. Only a few splicing factors that specifically promote GI intron splicing have been identified, however, none are from chloroplasts, which is the subject of this study. In previous work from our lab, a strategy was developed to identify splicing factors for chloroplast GI introns of Chlamydomonas by using suppressor genetics. A mutant with reduced splicing of the chloroplast 23S rRNA intron (Cr.LSU) was generated. Then, 3 nuclear suppressors (7120, 71N1 and 7151) with substantially restored splicing of Cr.LSU were isolated and partially characterized. However, the suppressor gene(s) were not identified. In this study, I have used genetic mapping to make a renewed attempt to isolate these genes. Using polymorphisms between the 137C strain that was used for suppressor isolation, and a new strain of C.reinhardtii (S1D2), the nuclear suppressor mutations in 7120 and 71N1 were mapped to a region on chromosome III that is essentially devoid of recombination. Based on the recombination maps, the suppressor gene in 7120 is located within a ~418-kb region from bp 2,473,064 to 2,891,232, whereas the suppressor in 71N1 is likely located within a ~236-kb subregion from bp 2,473,064 to 2,709,377. It is possible that these mutations are in the same gene; however, the maps could not be refined further due to the lack of recombination in this 418-kb region. I also attempted to compare the genomic sequence of the 7120 suppressor, which was obtained by next-generation sequencing, with the Chlamydomonas reference genome (JGI, v.4). Next-generation sequencing of 7120 revealed the existence of abundant repetitive sequences and transposable elements clustered in a ~40-kb subregion of the recombinationally suppressed 418-kb region on chromosome III. I suggest that the high frequency of repetitive sequences and transposable elements in this region may be the reason for the suppressed recombination. Searching for candidate genes in the mapped region led me to examine a novel protein that was predicted to have a putative chloroplast transit-peptide, and an RNA binding domain. Further bioinformatic analysis revealed a single rhodanese domain with an active-site cysteine. The protein was expressed in E.coli as the full-length and predicted mature forms, plus a small His-tag. The purified mature protein had rhodanese catalytic activity, based on the fact that it was able to transfer sulfur from thiosulfate to cyanide. Also, western blot analysis with a polyclonal antibody produced in rabbits showed that the cellular protein migrated on SDS gels close to the mature protein and faster than the full-length protein, indicative of an organelle-targeted protein. The antibody also showed that the cellular protein co-fractionated with chloroplasts. To gain insight into its in vivo function, the gene was knocked down using the tandem RNAi system (Rohr et al., 2004), which produced strains (5) with reductions of 31% to 76% in the mRNA level, and ~30% to ~60% in the protein level. These strains were sensitive to bright light, and had reduced rates of growth under all conditions, which are characteristics of chloroplast translation mutants. Thus, chloroplast protein synthesis was examined by radioisotope pulse-labeling in the presence of cycloheximide, which showed that the RNAi strains were broadly and negatively affected, and RT-PCR and northern blot revealed only normal chloroplast mRNA levels. These data have identified a new rhodanese-family enzyme that is required for chloroplast translation, which I have designated “CRLT”, for chloroplast rhodanese-like translation. / text
5

SALL4 - KHDRBS3 network enhances stemness by modulating CD44 splicing in basal-like breast cancer / SALL4 - KHDRBS3 系は CD44 遺伝子のスプライシングを調節することで basal-like 乳癌の幹細胞能を増強する

Matsumoto, Yoshiaki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20999号 / 医博第4345号 / 新制||医||1027(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 武田 俊一, 教授 高田 穣 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
6

Differential splicing in lymphoma

Zimmermann, Karin 05 September 2018 (has links)
Alternatives Spleißen ist ein wesentlicher Mechanismus, um Proteindiversität in Eukaryoten zu gewährleisten. Gewebespezifität sowie entwicklungsrelevante Prozesse werden unter anderem massgeblich davon beeinflusst. Aberrante (alternative) Spleißvorgänge können wiederum zu veränderten Proteinisoformen führen, die verschiedenste Krankheiten wie Krebs verursachen oder zu veränderter Medikamentenwirksamkeit beitragen können. In dieser Arbeit untersuchen wir differentielles Spleißen im Kontext von Krebserkrankungen. Dazu betrachten wir drei Aspekte, die uns wichtig erscheinen. Der erste Teil dieser Arbeit beschäftigt sich mit dem systematischen Vergleich verschiedener Methoden für die Detektion von differentiellem Spleißen in Exon-ArrayDaten. Anhand artifizieller und experimentell validierter Daten identifizieren wir Methoden, die über verschiedene Parameterszenarien hinweg robuste Ergebnisse liefern, und ermitteln bestimmte Datenparameter, die die Ergebnisgüte sowie die Qualität der angewandten Methoden beeinflussen. Im zweiten Teil identifizieren wir Spleiß-regulatorischer Proteine, die für die beobachteten Spleissveränderungen zwischen Krebs und einer Kontrolle verantwortlich sein könnten. Zu diesem Zweck stellen wir eine von uns entwickelte Methode basierend auf einem Netzwerkansatz vor. Hierbei werden Spleißfaktoren und differentiell gesplicete Exons in ein Netzwerk integriert und anschliessend anhand der Unterschiede in ihrer Zentralität geordnet. Im dritten Teil analysieren wir die Vergleichbarkeit zweier Datentypen, generiert durch unterschiedliche Technologien, in Bezug auf die Detektion von differentiellem Spleißen. Dazu beziehen wir mehrere Vergleichsebenen mit ein und wenden Methoden an, die für beide Technologien geeignet sind um eine methodenbasierte Beeinträchtigung der Vergleichbarkeit auszuschließen. Die Anwendung unseres Ansatzes auf zwei Datensätze identifiziert ähnliche Trends in der Vergleichbarkeit bei einer sich unterscheidenden Gesamtkonkordanz. / Alternative splicing is a crucial mechanism in eukaryotes, which provides an ample protein diversity that is necessary for maintaining an organism. In contrast, aberrant (alternative) splicing may lead to altered protein isoforms contributing to diseases such as cancer. In this thesis, we study differential splicing in cancer, i.e. splicing changes observed between cancerous and control tissues. We seek to identify methods best suited for the detection of differential splicing, we investigate regulatory factors potentially causal for the splicing changes observed, and we study the comparability of two data types obtained from different technologies with respect to differential splicing detection. The first part of the thesis assesses the performance of methods for detecting differential splicing from exon arrays as existing methods are often of low concordance. We examine global data parameters and their potential influence on results and method performance using artificial and validated experimental data. Overall, our evaluation indicates methods that perform robustly well across artificial and experimental data and identifies parameters impacting result performance. The second part aims at identifying regulatory factors responsible for splicing changes observed between cancer, and healthy tissue. Therefor, we develop a novel, network based approach which first integrates differentially spliced exons with splicing regulatory proteins (splicing factors), using transcriptomics data, and then ranks splicing factors according to their potential involvement in cancer. Third, we compare differential splicing detection based on RNA sequencing and exon array data by developing a multi-level comparison framework using two differential splicing detection methods applicable to both, RNA sequencing and exon array data, to avoid method inherent bias. We apply our multi-level framework to two data sets, leading, despite varying overall concordance, to similar trends in comparability.
7

The RNA Binding Protein SRSF1 modulates Immune and Cancer pathways by regulating MyD88 transcription

Unknown Date (has links)
Serine/Arginine splicing factor 1 (SRSF1), a member of the Serine/Arginine rich (SR) RNA-binding proteins (RBPs) family, regulates mRNA biogenesis at multiple steps and is deregulated in cancer and autoimmune diseases. Preliminary studies show that members of the SR protein family play a role in cellular transcription. We investigated SRSF1’s role in cellular gene transcription utilizing time-course RNA-Seq and nuclear run-on assays, validating a subset of genes transcriptionally regulated following SRSF1 overexpression. Pathway analysis showed that genes in the TNF/IL17 pathways were enriched in this dataset. Furthermore, we showed that MyD88, a strong activator of TNF transcription through transcription factors NF-κB and AP-1, is a primary target of SRSF1’s transcriptional activity. We propose that SRSF1 activates the transcription factors NF-κB and AP-1 through MyD88 pathway. SRSF1 overexpression regulates several genes that are deregulated in malignancies and immune disease, suggesting a role for SRSF1’s transcriptional activity in oncogenesis and immune response regulation. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
8

Mechanism-Based Personalized Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion / 偽エクソン生成を標的とした嚢胞性線維症に対する個別化医療

Shibata, Saiko 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23065号 / 医博第4692号 / 新制||医||1049(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 村川 泰裕, 教授 平井 豊博, 教授 小川 誠司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
9

Molecular and functional analysis of cardiac diversification by cell specific translatomic approaches in Drosophila Melanogaster / Analyses moléculaires et fonctionnelles de la diversification cardiaques par des approaches translatomiques cellules-spécifiques chez la Drosophile

Dondi, Cristiana 08 June 2018 (has links)
Le cœur humain est un organe composé de différents types cellulaires tels que les cardiomyocytes, les fibroblastes, les muscles lisses et les cellules endothéliales. Ces cellules se diversifient grâce à des mécanismes moléculaires spécifiques en acquérant leurs propriétés fonctionnelles spécifiques. L’embryon de Drosophile est un modèle simple et adapté pour étudier la diversification des cellules cardiaques et leurs propriétés spécifiques. Le but du projet est d’améliorer notre connaissance sur les acteurs moléculaires qui contrôlent la diversification des cellules cardiaques. Pour atteindre cet objectif nous avons appliqué la méthode TRAP-rc ("rare cell Translation Ribosome Affinity Purification") suivie du séquençage ARN pour identifier les ARN messagers en cours de traduction spécifiques des cellules cardiaques Tin et Lb (Tin CBs et Lb CBs) à deux stades de développement corrélés avec la morphogenèse du cœur embryonnaire. Dans une première analyse focalisée sur l'analyse des données issues des TRAP-Seq sur cellules Tin nous avons mis en évidence que CAP et MSP-300 sont impliqués dans la migration des cardioblasts pendant la fermeture du cœur. En parallèle, nous avons également identifié deux autres gènes impliqués dans la morphogenèse, kon-tiki et dGrip qui semblent contrôler la cohésion des CBs au cours de la migration. En outre, nous avons trouvé qu'au stade 16, environ 60% des gènes enrichis sont communs entre les populations Tin et Lb. Parmi ces gènes, Src42, sqa et flr participent à la régulation du cytosquelette d'actine et nos analyses ont permis de démontrer qu'ils avaient également des fonctions dans la morphogenèse cardiaque. Nous avons également identifié des groupes de gènes plus spécifiques à chacune des populations ciblées. Une catégorie fonctionnelle fortement associée à la population Lb, comprend les gènes qui régulent l'épissage des ARN messagers et certains de ces gènes semblent être requis au cours de la morphogenèse cardiaque. Enfin, nous avons comparé nos données de TRAP-seq cardiaque avec des données de TRAP-Seq issues du muscle somatique (de l'équipe), et ainsi identifié près de 90 gènes qui présentent des isoformes protéiques spécifiques à chaque tissu notamment impliquées dans la formation de l'unité contractile sarcomérique. Ceci suggère que des mécanismes d'épissage spécifiques sont mis en place dans différents types cellulaires pour moduler les fonctions de certaines protéines musculaires. A travers ce projet, nous avons identifié de nouveaux acteurs généraux de la migration collective des cardioblastes au cours de la fermeture du cœur mais également de nouveaux gènes potentiellement impliqués dans l’acquisition des propriétés spécifiques dessous populations cardiaques Tin et Lb et de tissus musculaires distincts. Nous espérons que les données générées permettront dans le futur de mieux comprendre les mécanismes de la cardiogenèse des vertébrés ainsi que l’étiologie de maladies cardiaques. / Cardiac cells diversification is required for the formation of a functional heart. Human heart is a multi-lineage organ that develops through progressive diversification of progenitors derived from different heart fields. This process is underlined by numerous changes in the expression of a repertory of genes that allow cells to acquire their own identity and functions. The Drosophila embryo is a relatively simple model to study the diversification of cardiac cells and their properties. The goal of this project is to identify the repertories of genes that control the formation of different types of cardiac cells. To reach this objective we applied Translation Ribosome Affinity Purification (TRAP) method followed by RNA sequencing in order to identify mRNA engaged in translation specific to two cardiac cell types (Tinman (Tin) and Labybird (Lb) expressing cells), at two different time windows. We obtained a list of enriched genes for the different types of cardiac cells and time points. In a first part, we focused our attention on the Tindatasets and found that two genes, CAP and Msp300, are involved in cardioblasts migration during the heart closure. Then we identified two other candidate genes kontiki and dGrip that seem to contribute to maintain cohesion between CBs during heartmorphogenesis. Moreover by comparing our spatial datasets, we found that for the same time point, around 60% of Tin CBs enriched genes are common with Lb CBs enriched population and within this group we identified evolutionary conserved genes such as Src42, flr and sqa known to be involved in the cytoskeleton organization and in the actinpolymerization and depolymerisation. Our premiminary analyses show that they seem to be required for correct cardiac morphogenesis. We also identified sets of genes more specific for each cardiac cell population. Indeed, Lb CBs datasets show that in early stage there is the enrichment of genes mostly involved in transcriptional regulation and RNA splicing and some of these genes (prp8 and prp38) are involved in cardiac development. In parallel, we compared our TRAP-Seq dataset in the cardiac system with the TRAP-seqon muscle cells, and identified close to 90 genes that present cardiac or muscular specific isoforms. It is known that the alternative splicing, by increasing proteins diversity, contributes to the acquisition of specific cell properties. Furthermore, some cardiomyopathies are associated to defects in the alternative splicing of genes encoding sarcomeric proteins that we found in our dataset such as Tropomyosin and Zasp52. With this project, we have identified new actors of collective cardioblast migration and a set of genes with potential role in the acquisition of individual properties of Tin and Lbcardiac cells or of specific type of muscle tissue. We hope that our data could provide new insights into the genetic control of vertebrate cardiogenesis and into etiology of cardiac diseases.
10

Identification de facteurs génétiques impliqués dans les mécanismes d'autorégulation de la protéine TDP-43 dans la drosophile. / Identification of genetic factors involved in autoregulatory mechanism of TDP-43 protein in drosophila

Pons, Marine 01 October 2018 (has links)
TDP-43 est une protéine de liaison aux acides nucléiques qui joue un rôle essentiel dans le métabolisme de l'ARN. À l'état physiologique, un contrôle strict des niveaux d’expression de cette protéine est critique pour la fonction et la survie cellulaire. Une boucle d'autorégulation négative est à la base de ce contrôle du taux intracellulaire de TDP-43. Laquelle a été identifiée comme le constituant principal des inclusions observées chez une majorité des patients atteints de Sclérose Latérale Amyotrophique (SLA) ou de Dégénérescence Lobaire Fronto-Temporale (DLFT). A ce jour, plus de 50 mutations faux-sensdu gène TARDBP/TDP-43 ont été décrites chez des patients DLFT/SLA, démontrant le rôle clé de TDP-43 dans ces pathologies neurodégénératives. Notons cependant que les conséquences fonctionnelles de ces mutations ne sont pas complètement déterminées. Plusieurs études suggèrent qu’une élévation des niveaux d’accumulation de TDP-43 pourraitparticiper aux mécanismes physiopathologiques. La modulation du cycle de production de TDP-43 pourrait donc constituer une nouvelle stratégie thérapeutique. Ce travail de recherche avait donc pour principal objectif d’identifier des modulateurs génétiques de la production de TDP-43 en utilisant un nouveau modèle de drosophile transgénique mimant les principales étapes d’autorégulation de TDP-43. Nous avons ainsi pu montrer que la modulation des niveaux d’expression de la protéine TCERG1 et de plusieurs facteurs d'épissage, parmi lesquels SRSF1, SRSF3 et SF3B1, influe sur les niveaux de production deTDP-43. Nous avons également montré que la présence des mutations DLFT/SLA n’altère pas la capacité de la protéine à s’autoréguler. / TDP-43 is a DNA/RNA binding protein that plays an important role in RNA metabolism. In the physiological state, strict control of its expression levels is critical for cell function and survival. TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. This protein has been identified as the principal component of the inclusions observed in a majority of patients with Amyotrophic Lateral Sclerosis (ALS) or FrontoTemporal Lobar Degeneration (FTLD). To date, more than 50 missense mutations of the TARDBP / TDP-43 gene have been described in FTLD / ALS patients, demonstrating the key role of TDP-43 in these neurodegenerative pathologies. However, the functional consequences of TDP-43 mutations are not completely determined. Several studies suggest that high accumulation levels of TDP-43 may participate in pathophysiological mechanisms. The modulation of the production cycle of TDP-43 may therefore provide a new therapeutic strategy. The main goal of this research project was to identify genetic modulators of TDP-43 production by using a novel transgenic Drosophila model mimicking main steps of TDP-43 the autoregulatory mechanism. We identified several splicing factors, including SF2, Rbp1 and Sf3b1, as genetic modulators of TDP-43 production. We have also shown that modulation of TCERG1 expression levels affect TDP-43 production levels in flies. Finally, we found that FTLD/ALSlinked TDP-43 mutations do not alter TDP-43’s ability to self-regulate its expression and consequently of the homeostasis of TDP-43 protein levels.

Page generated in 0.4429 seconds