• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 73
  • 26
  • 21
  • 11
  • 8
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 337
  • 133
  • 79
  • 64
  • 63
  • 55
  • 51
  • 50
  • 40
  • 38
  • 36
  • 27
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

The Other Target for Ribosomal Antibiotics: Inhibition of Bacterial Ribosomal Subunit Formation

Champney, W. 01 December 2006 (has links)
The development of microbial resistance to practically all currently used antimicrobial agents has spurred efforts to develop new antibiotics and to identify novel targets in bacterial cells. This review summarizes the evidence for inhibition of bacterial ribosomal subunit formation as a target for many antibiotics distinct from their well-known inhibition of translation. Features of a model to explain this activity are explored. Results are presented to show the accumulation of both 30S and 50S ribosomal subunit precursors in antibiotic inhibited cells. These precursors have been characterized and are shown to bind radio-labeled drugs. Pulse and chase labeling studies have revealed the slower rates of subunit synthesis in drug treated cells compared with uninhibited controls. Resynthesis of subunits after antibiotic removal precedes recovery of control protein synthesis capacity, consistent with the model presented. Also certain mutant strains defective in different ribonuclease activities are more susceptible to antibiotic inhibition of assembly as predicted. Results indicating the equivalence of assembly inhibition and translational inhibition are described. Lastly, the identification of a 50S subunit precursor particle as a substrate for rRNA methyltransferase activity is shown. The weight of evidence presented clearly indicates that ribosomal antibiotics have a second target in cells. Inhibition of cell growth and subsequent cell death results from the activity of these antibiotics on the combined targets. The possibility of designing assembly specific inhibitors is discussed.
72

Molecular mechanisms of programmed ribosomal frameshifting and cap-independent translation of Dianthovirus / ダイアンソウイルスのフレームシフト翻訳とキャップ非依存的翻訳の分子機構

Tajima, Yuri 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第18334号 / 農博第2059号 / 新制||農||1023(附属図書館) / 学位論文||H26||N4841(農学部図書室) / 31192 / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 奥野 哲郎, 教授 佐久間 正幸, 准教授 吉田 天士 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
73

Characterization of the OCC Gene Cluster Required for the Production of Antifungal Compound Occidiofungion in Burkholderia Contaminans Strain MS14

Gu, Ganyu 07 August 2010 (has links)
Strain MS14, exhibiting antifungal activity, was classified to belong to Burkholderia contaminans. Occidiofungin produced by strain MS14 is an octapeptide dedicated to a broad range of antifungal activities of the bacterium. The 58.2-kb genomic fragment containing 18 open reading frames (ORFs), named occidiofungin (occ) gene cluster, is required for occidiofungin production. Putative proteins encoded by five nonribosomal peptide synthetase genes (occA – occE) of the gene cluster were predicted to contain the catalytic modules responsible for the biosynthesis of occidiofungin. Transcription of all the ORFs identified in the region except ORF1 and ORF16 was regulated by both ambR1 and ambR2, the LuxR-type regulatory genes located at the left border of the cluster. The functional ambR1 gene was essential for transcription of ambR2, and constitutive expression of ambR2 did not restore the phenotype of the mutant MS14GG44(ambR1::nptII). Sequence analysis revealed that the occ gene cluster shared high similarity (99% nucleotide coverage and 91% identity) to an uncharacterized DNA region of B. ambifaria strain AMMD. The gene cluster was not found in other Burkholderia strains available in GenBank (nucleotide coverage < 24%). Analysis of G+C composition and prediction using “IslandPick” indicate that the occ gene cluster has possibly been horizontally transferred between bacteria. In addition, the absence of the gene cluster in clinical strains of Burkholderia indicates that occidiofungin is not required for potential human pathogenesis. The findings have provided insights into the development of antifungal medicines and agricultural fungicides based on occidiofungin.
74

A Temperature-Sensitive Mutant of Escherichia Coli With an Alteration in Ribosomal Protein L22

Burnette-Vick, Bonnie, Champney, W. Scott, Musich, Phillip R. 01 February 1994 (has links)
A temperature-sensitive, protein synthesis-defective mutant of Escherichia coli exhibiting an altered ribosomal protein L22 has been investigated. The temperature-sensitive mutation was mapped to the rplV gene for protein L22. The genes from the wild type and mutant strains were amplified by the polymerase chain reaction and the products were sequenced. A cytosine to thymine transition at position 22 of the coding sequence was found in the mutant DNA, predicting an arginine to cysteine alteration in the protein. A single cysteine residue was found in the isolated mutant protein. This amino acid change accounts for the altered mobility of the mutant protein in two-dimensional gels and during reversed-phase HPLC. The temperature-sensitive phenotype was fully complemented by a plasmid carrying the wild type L22 gene. Ribosomes from the complemented cells showed only wild type protein L22 by two dimensional gel analysis and were as heat-resistant as control ribosomes in a translation assay. The point mutation in the L22 gene is uniquely responsible for the temperature-sensitivity of this strain.
75

Characterization of Group I Introns in the Ribosomal RNA Internal Transcribed Spacers of Eight Orders of Sharks

Patil, Veena P. 17 November 2011 (has links)
No description available.
76

Initial characterization of the 5S and ribosomal gene families in Pinus radiata

Gorman, Susan Wilkie January 1992 (has links)
No description available.
77

Biochemical and MALDI-MS Methods for Characterization of Ribosomal Proteins

Hamburg, Daisy-Malloy 22 April 2008 (has links)
No description available.
78

Inheritance and gene regulation in a ribosomal protein gene family of arabidopsis thaliana

Tilley, Michael R. January 2003 (has links)
No description available.
79

Characterization of ribosomal S6 protein phosphorylation and possible control of ribosome biogenesis in arabidopsis cell culture

Kim, Sunghan 22 January 2004 (has links)
No description available.
80

Expression Analysis of Cytoskeletal and Ribosomal Genes during Adult Diapause in the Northern House Mosquito, Culex pipiens

Kim, Mijung 24 September 2009 (has links)
No description available.

Page generated in 0.04 seconds