Spelling suggestions: "subject:"ricci"" "subject:"ficci""
31 |
Ricci Curvature of Finsler Metrics by Warped ProductPatricia Marcal (8788193) 01 May 2020 (has links)
<div>In the present work, we consider a class of Finsler metrics using the warped product notion introduced by B. Chen, Z. Shen and L. Zhao (2018), with another “warping”, one that is consistent with the form of metrics modeling static spacetimes and simplified by spherical symmetry over spatial coordinates, which emerged from the Schwarzschild metric in isotropic coordinates. We will give the PDE characterization for the proposed metrics to be Ricci-flat and construct explicit examples. Whenever possible, we describe both positive-definite solutions and solutions with Lorentz signature. For the latter, the 4-dimensional metrics may also be studied as Finsler spacetimes.</div>
|
32 |
Courbure de Ricci grossière de processus markoviens / Coarse Ricci curvature of Markov processesVeysseire, Laurent 16 July 2012 (has links)
La courbure de Ricci grossière d’un processus markovien sur un espace polonais est définie comme un taux de contraction local de la distance de Wasserstein W1 entre les lois du processus partant de deux points distincts. La première partie de cette thèse traite de résultats valables dans le cas d’espaces polonais quelconques. On montre que l’infimum de la courbure de Ricci grossière est un taux de contraction global du semigroupe du processus pour la distance W1. Quoiqu’intuitif, ce résultat est difficile à démontrer en temps continu. La preuve de ce résultat, ses conséquences sur le trou spectral du générateur font l’objet du chapitre 1. Un autre résultat intéressant, faisant intervenir les valeurs de la courbure de Ricci grossière en différents points, et pas seulement son infimum, est un résultat de concentration des mesures d’équilibre, valable uniquement en temps discret. Il sera traité dans le chapitre 2. La seconde partie de cette thèse traite du cas particulier des diffusions sur les variétés riemanniennes. Une formule est donnée permettant d’obtenir la courbure de Ricci grossière à partir du générateur. Dans le cas où la métrique est adaptée à la diffusion, nous montrons l’existence d’un couplage entre les trajectoires tel que la courbure de Ricci grossière est exactement le taux de décroissance de la distance entre ces trajectoires. Le trou spectral du générateur de la diffusion est alors plus grand que la moyenne harmonique de la courbure de Ricci. Ce résultat peut être généralisé lorsque la métrique n’est pas celle induite par le générateur, mais il nécessite une hypothèse contraignante, et la courbure que l'on doit considérer est plus faible. / The coarse Ricci curvature of a Markov process on a Polish space is defined as a local contraction rate of the W1 Wasserstein distance between the laws of the process starting at two different points. The first part of this thesis deals with results holding in the case of general Polish spaces. The simplest of them is that the infimum of the coarse Ricci curvature is a global contraction rate of the semigroup of the process for the W1 distance between probability measures. Though intuitive, this result is diffucult to prove in continuous time. The proof of this result, and the following consequences for the spectral gap of the generator are the subject of Chapter 1. Another interesting result, using the values of the coarse Ricci curvature at different points, and not only its infimum, is a concentration result for the equilibrium measures, only holding in a discrete time framework. That will be the topic of Chapter 2. The second part of this thesis deals with the particular case of diffusions on Riemannian manifolds. A formula is given, allowing to get the coarse Ricci curvature from the generator of the diffusion. In the case when the metric is adapted to the diffusion, we show the existence of a coupling between the paths starting at two different points, such that the coarse Ricci curvature is exactly the decreasing rate of the distance between these paths. We can then show that the spectral gap of the generator is at least the harmonic mean of the Ricci curvature. This result can be generalized when the metric is not the one induced by the generator, but it needs a very restricting hypothesis, and the curvature we have to choose is smaller.
|
33 |
Sólitons de Ricci Shrinking em variedades Riemannianas completas / Complete Gradient Shrinking Ricci SolitonLEANDRO NETO, Benedito 02 September 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1
Benedito Leandro Neto.pdf: 688417 bytes, checksum: c1ac127d257e0a8d59d30de577413351 (MD5)
Previous issue date: 2011-09-02 / In this work, we started with an historical study of Ricci Solitons showing that they, often, arise as a auto-similar solution for the Ricci flow. It was demonstrated, then, some
basic concepts of Riemannian Geometry and a formal definition of a Ricci Solitons. To conclude the work, it was presented a study analysis of the [6] article, establishing ,
among other results, two theorems: the first one, an estimation for the potential function of a Gradient Shrinking Ricci Solitons, complete non-compact, and, the second one, an estimation for the volume of a Gradient Shrinking Ricci Solitons, complete non-compact. / Nesse trabalho, nós começamos com um levantamento histórico sobre os Ricci Sólitons, mostrando que, muitas vezes, eles surgem como solução auto-similar do fluxo de
Ricci. Em seguida, introduzimos alguns conceitos básicos de geometria Riemanniana e definimos formalmente um Rici Sóliton. Concluimos o trabalho com um estudo aprofundado
do artigo [6], do qual mostramos, dentre outros resultados, dois teoremas: uma estimativa para a função potencial de um Ricci Sóliton Gradiente Shrinking, completo e não-compacto e uma estimativa superior para o volume de um Ricci Sóliton Gradiente Shrinking, completo e não-compacto.
|
34 |
The Geometry of quasi-Sasaki ManifoldsWelly, Adam 27 October 2016 (has links)
Let (M,g) be a quasi-Sasaki manifold with Reeb vector field xi. Our goal is to understand the structure of M when g is an Einstein metric. Assuming that the S^1 action induced by xi is locally free or assuming a certain non-negativity condition on the transverse curvature, we prove some rigidity results on the structure of (M,g).
Naturally associated to a quasi-Sasaki metric g is a transverse Kahler metric g^T. The transverse Kahler-Ricci flow of g^T is the normalized Ricci flow of the transverse metric. Exploiting the transverse Kahler geometry of (M,g), we can extend results in Kahler-Ricci flow to our transverse version. In particular, we show that a deep and beautiful theorem due to Perleman has its counterpart in the quasi-Sasaki setting.
We also consider evolving a Sasaki metric g by Ricci flow. Unfortunately, if g(0) is Sasaki then g(t) is not Sasaki for t>0. However, in some instances g(t) is quasi-Sasaki. We examine this and give some qualitative results and examples in the special case that the initial metric is eta-Einstein.
|
35 |
Quasi-local energy of rotating black hole spacetimes and isometric embeddings of 2-surfaces in Euclidean 3-spaceUnknown Date (has links)
One of the most fundamental problems in classical general relativity is the
measure of e↵ective mass of a pure gravitational field. The principle of equivalence
prohibits a purely local measure of this mass. This thesis critically examines the most
recent quasi-local measure by Wang and Yau for a maximally rotating black hole
spacetime. In particular, it examines a family of spacelike 2-surfaces with constant
radii in Boyer-Lindquist coordinates. There exists a critical radius r* below which, the
Wang and Yau quasi-local energy has yet to be explored. In this region, the results of
this thesis indicate that the Wang and Yau quasi-local energy yields complex values
and is essentially equivalent to the previously defined Brown and York quasi-local
energy. However, an application of their quasi-local mass is suggested in a dynamical
setting, which can potentially give new and meaningful measures. In supporting this
thesis, the development of a novel adiabatic isometric mapping algorithm is included.
Its purpose is to provide the isometric embedding of convex 2-surfaces with spherical
topology into Euclidean 3-space necessary for completing the calculation of quasilocal
energy in numerical relativity codes. The innovation of this algorithm is the
guided adiabatic pull- back routine. This uses Ricci flow and Newtons method to give isometric embeddings of piecewise simplicial 2-manifolds, which allows the algorithm
to provide accuracy of the edge lengths up to a user set tolerance. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
36 |
Riemannian Geometry of Quantum Groups and Finite Groups withShahn Majid, Andreas.Cap@esi.ac.at 21 June 2000 (has links)
No description available.
|
37 |
Ricci Yang-Mills FlowStreets, Jeffrey D. 04 May 2007 (has links)
Let (Mn, g) be a Riemannian manifold. Say K ! E ! M is a principal K-bundle
with connection A. We define a natural evolution equation for the pair (g,A) combining
the Ricci flow for g and the Yang-Mills flow for A which we dub Ricci Yang-Mills
flow. We show that these equations are, up to di eomorphism equivalence, the gradient
flow equations for a Riemannian functional on M. Associated to this energy
functional is an entropy functional which is monotonically increasing in areas close
to a developing singularity. This entropy functional is used to prove a non-collapsing
theorem for certain solutions to Ricci Yang-Mills flow.
We show that these equations, after an appropriate change of gauge, are equivalent
to a strictly parabolic system, and hence prove general unique short-time existence
of solutions. Furthermore we prove derivative estimates of Bernstein-Shi type.
These can be used to find a complete obstruction to long-time existence, as well as
to prove a compactness theorem for Ricci Yang Mills flow solutions.
Our main result is a fairly general long-time existence and convergence theorem
for volume-normalized solutions to Ricci Yang-Mills flow. The limiting pair (g,A)
satisfies equations coupling the Einstein and Yang-Mills conditions on g and A respectively.
Roughly these conditions are that the associated curvature FA must be
large, and satisfy a certain “stability” condition determined by a quadratic action of
FA on symmetric two-tensors.
|
38 |
Modified Ricci flow on a principal bundleYoung, Andrea Nicole, 1979- 10 September 2012 (has links)
Let M be a Riemannian manifold with metric g, and let P be a principal G-bundle over M having connection one-form a. One can define a modified version of the Ricci flow on P by fixing the size of the fiber. These equations are called the Ricci Yang-Mills flow, due to their coupling of the Ricci flow and the Yang-Mills heat flow. In this thesis, we derive the Ricci Yang-Mills flow and show that solutions exist for a short time and are unique. We study obstructions to the long-time existence of the flow and prove a compactness theorem for pointed solutions. We represent the Ricci Yang-Mills flow as a gradient flow and derive monotonicity formulas that can be used to study breather and soliton solutions. Finally, we use maximal regularity theory and ideas of Simonett concerning the asymptotic behavior of abstract quasilinear parabolic partial differential equations to study the stability of the Ricci Yang-Mills flow in dimension 2 at Einstein Yang-Mills metrics. / text
|
39 |
Analysis of Ricci flow on noncompact manifoldsWu, Haotian, active 2013 22 October 2013 (has links)
In this dissertation, we present some analysis of Ricci flow on complete noncompact manifolds. The first half of the dissertation concerns the formation of Type-II singularity in Ricci flow on [mathematical equation]. For each [mathematical equation] , we construct complete solutions to Ricci flow on [mathematical equation] which encounter global singularities at a finite time T such that the singularities are forming arbitrarily slowly with the curvature blowing up arbitrarily fast at the rate [mathematical equation]. Near the origin, blow-ups of such a solution converge uniformly to the Bryant soliton. Near spatial infinity, blow-ups of such a solution converge uniformly to the shrinking cylinder soliton. As an application of this result, we prove that there exist standard solutions of Ricci flow on [mathematical equation] whose blow-ups near the origin converge uniformly to the Bryant soliton. In the second half of the dissertation, we fully analyze the structure of the Lichnerowicz Laplacian of a Bergman metric g[subscript B] on a complex hyperbolic space [mathematical equation] and establish the linear stability of the curvature-normalized Ricci flow at such a geometry in complex dimension [mathematical equation]. We then apply the maximal regularity theory for quasilinear parabolic systems to prove a dynamical stability result of Bergman metric on the complete noncompact CH[superscript m] under the curvature-normalized Ricci flow in complex dimension [mathematical equation]. We also prove a similar dynamical stability result on a smooth closed quotient manifold of [mathematical symbols]. In order to apply the maximal regularity theory, we define suitably weighted little Hölder spaces on a complete noncompact manifold and establish their interpolation properties. / text
|
40 |
Intrinsic Geometric Flows on Manifolds of RevolutionTaft, Jefferson January 2010 (has links)
An intrinsic geometric flow is an evolution of a Riemannian metric by a two-tensor. An extrinsic geometric flow is an evolution of an immersion of a manifold into Euclidean space. An extrinsic flow induces an evolution of a metric because any immersed manifold inherits a Riemannian metric from Euclidean space. In this paper we discuss the inverse problem of specifying an evolution of a metric and then seeking an extrinsic geometric flow which induces the given metric evolution. We limit our discussion to the case of manifolds that are rotationally symmetric and embeddable with codimension one. In this case, we reduce an intrinsic geometric flow to a plane curve evolution. In the specific cases we study, we are able to further simplify the evolution to an evolution of a function of one variable. We provide soliton equations and give proofs that some soliton metrics exist.
|
Page generated in 0.0219 seconds