• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of charge injection at electrode-dielectric interface relevant for HVDC cables : Simulation of charge injection and transport dynamics in electrical insulation for HVDC cables

Mosa, Mohammed January 2023 (has links)
A bipolar charge transport (BCT) model is used to simulate charge injection and transportdynamics inside insulation material which are used in a high voltage direct current (HVDC)cable. Gaining knowledge about space charge density and electric field distribution in theinsulation material enables minimising charge injection at the metal-insulator interface andavoiding unnecessary energy loss. Simulation methods using the numerical Finite ElementMethod (FEM) are implemented in COMSOL multiphysics in order to investigate the effect ofchemical structure such as dipoles, physical defects such as interface roughness and impurityconcentration leading to ions, on the potential barrier and charge injection at the interface.Interface dipoles such as surface dipoles or chemical dipoles can increase or decrease thepotential barrier at the interface depending on direction/orientation of the dipole. Moreover,using a field enhancement factor to include the effect of interface roughness at the interfaceyields increased charge injection when higher values of the field enhancement factor wereused. The barrier height becomes therefore locally lower where the degree of roughness ishigher. Including the effect of ions, the electric field was observed to be enhanced near theelectodes, where it was weakened in the middle of the insulation, depending on the amount ofthe impurity concentration inside the insulation. Improvement on the charge injection lows isalso done using a combination of both Richardson-Schottky and Fowler-Nordheim chargeinjection laws to include both a classical and a quantum mechanical description in the BCTmodel. Solving for the transmission coefficient from Schrödinger equation could improve theaccuracy of Fowler-Nordheim as well. Including potentials due to image effect or chemicalcompositions such as water dipoles will affect the charge injection barrier and the transmission coefficient.

Page generated in 0.0531 seconds