• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 94
  • 90
  • 16
  • 15
  • 15
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 462
  • 106
  • 95
  • 53
  • 52
  • 49
  • 47
  • 44
  • 43
  • 39
  • 38
  • 37
  • 34
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Factorizations of finite mappings on riemann surfaces

Wang, Mingxi, 汪明晰 January 2007 (has links)
published_or_final_version / abstract / Mathematics / Master / Master of Philosophy
12

Fenómenos de concentración en geometría y análisis no lineal

Subiabre Sánchez, Felipe Ignacio January 2014 (has links)
Ingeniero Civil Matemático / El trabajo presentado en esta memoria se sitúa en la interfaz entre el análisis y la geometría. El interés recae en el estudio de fenómenos de concentración para dos problemas "geométricos" no lineales: la existencia de hipersuperficies con r-curvatura constante en variedades Riemannianas, y una ecuación de Schrödinger no lineal. Esta memoria se puede dividir en dos partes principales. La primera está dedicada a explorar algunos resultados sobre concentración de familias de hipersuperficies de curvatura media constante (o en general curvatura r-media constante) con topología no trivial en variedades Riemannianas compactas. Se recuerda que la curvatura r-media de una hipersuperficie se define como la r-ésima función simétrica elemental de las curvaturas principales de la hipersuperficie. Se prueba que las técnicas desarrolladas en el trabajo de Mahmoudi, Mazzeo y Pacard se pueden extender para manejar el caso de curvatura r-media con r>=1. Este fenómeno de concentración se relaciona en general con un fenómeno de resonancia, que hace el análisis particularmente delicado y que también se encuentra en el estudio de una clase de ecuaciones elípticas no lineales que presentan concentración sobre conjuntos de dimensión mayor. En la segunda parte, correspondiente al paper presentado, se prueba un nuevo resultado sobre concentración en subvariedades para una ecuación de Schrödinger no lineal con potencial definido en una variedad Riemanniana suave y compacta M o el espacio Euclídeo R^n, resolviendo en completa generalidad una conjetura planteada por Ambrosetti, Malchiodi y Ni. Precisamente, se estudian soluciones positivas de la siguiente ecuación semilineal: $$\e^2\Delta_{\bar g} u - V(z)u + u^{p} =0 en M,$$ donde (M,g) es una variedad Riemanniana n-dimensional suave, compacta y sin borde o el espacio Euclídeo R^n, e es un parámetro positivo pequeño, p>1 y V es un potencial uniformemente positivo. Se prueba que dado k=1,...,n-1 y 1<p<(n+2-k)/(n-2-k), y suponiendo que K es una subvariedad k-dimensional suave y encajada de M, que es estacionaria y no degenerada con respecto al funcional $\int_K V^{\frac{p+1}{p-1}-\frac{n-k}{2}}dvol$, entonces existe una secuencia $e=\e_j \to 0$ y soluciones positivas asociadas $u=u_\e$ que concentran sobre K en el sentido de que decaen exponencialmente a cualquier distancia positiva a K. En particular este enfoque explora una conexión entre soluciones de esta ecuación de Schrödinger no lineal y subvariedades f-minimales en variedades con densidad.
13

Integrais e aplicações / Integral and applications

Manço, Rafael de Freitas 01 September 2016 (has links)
O intuito deste trabalho é fazer uma análise sobre o processo de integração de funções. Existem muitas generalizações do conceito de integração abordado inicialmente por meio da integral de Riemann, como por exemplo, a integral de Riemann-Stieltjes, Lebesgue, Henstock-Kurzweil entre outras. Abordaremos especialmente a integral de Riemann-Stieltjes, e mostraremos a limitação da integral de Riemann no estudo de convergência de funções, indicando a necessidade de se generalizar o processo de integração. Faremos uma aplicação da integral de Riemann-Stieltjes no estudo de variáveis aleatórias e apresentamos uma proposta de abordagem, para a sala de aula, sobre o deslocamento e distância percorrida por um objeto em movimento retilíneo uniforme associado a área. / The aim of this work is analizing the process of integration of functions. There are many generalizations of the integration concept originally addressed by Riemann integral such as the Riemann-Stieltjes integral, Lebesgue integral, Henstock-Kurzweil integral, among others. We will be specially concerned with the integral of Riemann-Stieltjes and we will show the limitations of Riemann integral about convergence of functions, leading to the need to generalize the integration process. We will apply Riemann-Stieltjes integral for the study of random variables and present an approach to the classroom, on the displacement and distance traveled by an object in uniform rectilinear motion associated to concept of area.
14

Harmonic maps on surfaces.

January 1999 (has links)
by Tsui Wai-kwok Ricky. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 58-59). / Abstracts in English and Chinese. / Chapter 1 --- Preliminary --- p.4 / Chapter 1.1 --- Introduction --- p.4 / Chapter 1.2 --- Some basic theorem --- p.7 / Chapter 2 --- Bubble tree Convergence for a sequence of harmonic map --- p.11 / Chapter 3 --- Heat Flow of Harmonic Maps on Riemann Surface --- p.21 / Chapter 3.1 --- Existence of unique solution to the evolution problem --- p.21 / Chapter 3.1.1 --- Some Basic Estimates --- p.22 / Chapter 3.1.2 --- Existence Result --- p.34 / Chapter 3.1.3 --- Behaviour of solutions near singular points --- p.37 / Chapter 3.2 --- Finite time Blow-up --- p.39 / Chapter 3.3 --- Energy Identity --- p.51 / Bibliography --- p.58
15

A study on Riemann surfaces and algebraic curves.

January 2009 (has links)
Lau, Sui Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 81). / Abstract also in Chinese. / Chapter 1 --- Basic Notions of Riemann Surfaces --- p.5 / Chapter 1.1 --- "Functions, Forms and Hurwitz's Formula" --- p.6 / Chapter 1.2 --- Divisors --- p.10 / Chapter 1.3 --- Plucker's Formula for a Smooth Projective Plane Curve --- p.14 / Chapter 1.4 --- Sheaves and Cohomology --- p.17 / Chapter 2 --- The Riemann-Roch Theorem and Algebraic Curves --- p.27 / Chapter 2.1 --- Finiteness Theorem --- p.27 / Chapter 2.2 --- Transcendence Degree of M(X) --- p.33 / Chapter 2.3 --- The Riemann-Roch Theorem and Serre Duality --- p.37 / Chapter 2.4 --- Holomorphic Embedding in a Projective Space --- p.44 / Chapter 2.5 --- Algebraic Curves --- p.50 / Chapter 3 --- Invertible Sheaves and Line Bundles --- p.55 / Chapter 3.1 --- Algebraic Sheaves --- p.55 / Chapter 3.2 --- Invertible Sheaves --- p.55 / Chapter 3.3 --- Line Bundles --- p.61 / Chapter 3.4 --- Isomorphic Representations of the Picard Group --- p.66 / Chapter 4 --- A Uniqueness Theorem for Algebraic Curves --- p.72 / Chapter 4.1 --- Associated Curves and Normal Forms --- p.72 / Chapter 4.2 --- Proof of a Uniqueness Theorem for Algebraic Curves --- p.76 / Bibliography --- p.81
16

Analytische Funktionen mit beliebig vorgeschriebenem unendlich-blättrigem Existenzbereiche

Freundlich, Erwin, January 1910 (has links)
Thesis (doctoral)--Georg-August-Universität zu Göttingen, 1910. / Vita.
17

Holomorphic vector bundles on compact Riemann surfaces

Wong, Chiu-fai. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 116-117).
18

Image points and Riemann's theorem

Gerst, Francis Joseph, January 1925 (has links)
Thesis (Ph. D.)--Johns Hopkins University, 1925. / Vita.
19

Holomorphic vector bundles on compact Riemann surfaces

王朝輝, Wong, Chiu-fai. January 2000 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
20

Some relations between the Riemann zeta-function and certain number theoretic functions

Robinson, Valerie (Valerie Ruth) January 1969 (has links)
No description available.

Page generated in 0.0876 seconds