1 |
Application des analyses par RMN/IRM et gammadensimétrie à la réparationdu béton âgé : étude des transferts hydriques, de l’impact sur l’hydratation du mortierde réparation et sur la durabilité du béton réparé / Application of NMR/MRI and gamma-ray attenuation analysis to the repairof old concrete : investigation of moisture transport, impact on hydrationof repair mortar and durability of repaired concreteWang, Biyun 22 September 2015 (has links)
La zone d'enrobage des aciers des structures en béton armé est soumise au cours de la vie de l'ouvrage à l'action de divers agents agressifs (ions chlorure, dioxyde de carbone, etc.) qui sont susceptibles d'entraîner la corrosion des armatures. Dans le cadre de la maintenance de l'ouvrage, une réparation du béton dégradé est généralement imposée afin d'assurer l'intégrité et la sécurité de la structure, et d'en allonger la pérennité. Cette étude s'attache à explorer les transferts hydriques qui limitent l'efficacité de la réparation au cours de l'hydratation du mortier de réparation. L'évolution microstructural et les profils hydriques sont obtenus par des techniques non-destructives comme l'imagerie résonance magnétique (IRM) et la gamma-densimétrie (GD) depuis très jeune âge à 28 jours. La durabilité du béton réparé est concernée. L'effet du séchage est évité dans cette étude. Le mortier isolé d'une même formulation est préparé pour la comparaison du comportement d'hydratation avec le mortier de réparation. Des diverses techniques classiques aident de compléter les résultats obtenus par IRM et GD. Donc le système de réparation est désigné. Les transferts hydriques à l'interface sont visualisés pendant la réparation (0 - 28 jours), afin de permettre une exploration en profondeur sur les mécanismes des couplages physico-chimiques. La réparation plus efficace donc est déterminée par cette méthodologie, en étudiant divers matériaux de réparation, divers états de support (saturé ou séché) et divers conditions environnementaux, etc. De plus, après la réparation (1 - 2 mois), la porosité totale est mesurée par GD ou la porosimétrie par l'intrusion de mercure (PIM). La distribution poreuse est aussi examinée par PIM selon la hauteur du système de réparation. Les indicateurs de durabilité (Cl- et CO2) après la réparation (> 2 mois) présentent l'empêchement de pénétration des ions chlorures et un effet non-évident pour la pénétration du dioxyde de carbone. L'évolution est suivie au fur et à mesure pendant la pénétration, afin d'explorer l'efficacité de la réparation qui s'adresse à une vie de service prolongée. Cette méthodologie pourra être appliquée aussi sur des autres systèmes, où il existe des transferts hydriques. Par exemple, une couche de protection en Béton Fibré à Ultra-haute Performance (BFUHP) sur le béton ordinaire. En conclusion, cette méthodologie en combinant des techniques non-destructifs et destructifs, est un outil d'étudier le système de réparation par un moyen systématique et quantitatif. C'est intéressant de comparer des divers cas. L'efficacité de réparation est étudiée afin d'assurer une durabilité à long terme / The coating area of steel reinforced concrete structures is subjected during service life time to various aggressive agents (carbon dioxide, chloride ions, etc.), which causes corrosion of steel rebars. Concerning the maintenance, repair works of degraded concrete cover are generally imposed to ensure its integrity and structural safety, and to extend long-term durability. This research aims in exploring moisture transfers which limit the efficiency of repair work during mortar hydration. Microstructure evolution and water profiles are obtained by non-destructive techniques such as Magnetic Resonance Imaging (MRI) and Gamma-Ray Attenuation (GRA) since casting until 28 days. The durability of repaired concrete is involved after the repair procedure. The effect of drying is avoided in this research. Sealed mortar of the same formula is prepared to compare its hydration performance with the repair mortar. Various conventional techniques help to supplement the results obtained by MRI and GRA. The configuration of designed repair systems is shown. Moisture transfers at the interface between the repair mortar and the old concrete are investigated during the repair procedure (0 - 28 days), which allows exploring the mechanisms of physico-chemical couplings. Efficient repair work can be determined for various repair materials, various substrates (initially-saturated or initially-dried), various environmental conditions, etc. Furthermore, total porosity is measured by GRA or by Mercury Intrusion Porosimetry (MIP) after the repair procedure (1 - 2 months). Pore size distribution (PSD) is also investigated by MIP at different positions within the repair systems. Durability indicators (Cl- and CO2) after the repair procedure (> 2 months) present a prevention of chloride penetration and a non-evident influence on carbonation. Evolution is followed during penetration, in order to explore repair efficiency during prolonged service life time. This methodology could also be applied on various systems where exist moisture transfers. For example, a protective layer of Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) on conventional concrete. In conclusion, this methodology is a tool to investigate the repair systems in a systematic and quantitative way, by combining non-destructive and destructive techniques. It is interesting to compare aforementioned systems. Repair efficiency is investigated in order to ensure a long-term durability
|
2 |
Étude des micro/nano sondes pour la Résonance Magnétique Nucléaire (RMN) / Investigation of micro/nano probes for Nuclear Magnetic Resonance (NMR)Akel, Mohamad 17 December 2013 (has links)
Dans ce travail, nous exposons une méthode basée sur la détection localisée en couplage capacitif de la composante électrique du signal RMN via des micro/nano sondes spécifiquement développées. Dans la première étape de ce travail nous avons utilisé des NEMS à base de nanotube de carbone pour réaliser une détection du signal RMN à l'échelle nanométrique. En effet, grâce à un couplage électromécanique, nous avons caractérisé ces systèmes en émission de champ, déterminé expérimentalement leur fréquence de résonance et montré qu'ils sont capables de détecter un signal radiofréquence. Pour utiliser ces dispositifs en RMN, l'adaptation du champ statique B0 de l'aimant pour atteindre la valeur de la fréquence de Larmor d'un atome est nécessaire. L'excitation locale autour de ces systèmes permettra une caractérisation complète et fiable. Pour mettre en place cette excitation localisée, nous avons choisi, dans la deuxième étape de cette thèse, une sonde locale de champ électromagnétique à l'échelle micrométrique. D'abord, nous présentons des simulations autour de la microsonde, décrivant la propagation des champs électrique et magnétique injectée par la microsonde. Nous avons caractérisé la microsonde en mode collection. Nous montrons une décroissance de l'intensité du signal RMN, en fonction de la distance. Nous avons observé et modélisé démontrant ainsi que La microsonde est capable de détecter localement un signal RMN tandis que la bobine capte de façon globale. Nous présentons les premières expériences de l'utilisation de la microsonde en mode émission. Ces mesures nous fournissent un modèle qui décrit une excitation inhomogène, dûe à l'émission locale de la puissance (décroissance exponentielle de la puissance), proche de la microsonde. Une distribution des angles de basculement est répartie d'une façon inhomogène induisant une distribution des intensités du signal RMN autour de la microsonde. À la fin de cette thèse, nous avons réalisé deux expériences comme applications directes suite des études sur la caractérisation de la microsonde. La première consiste à imager un volume d'eau placé dans un bain d'huile de silicone. L'image est obtenue en déplaçant mécaniquement la microsonde et en réalisant pour chaque point une mesure de spectroscopie localisée. Dans la deuxième expérience, la microsonde est utilisée pour injecter dans ce volume d'eau des impulsions électromagnétiques et détecte à la suite le signal RMN. Notre étude sur la caractérisation de l'émission locale par une microsonde et la détection du signal radiofréquence par un NEMS à base de NTC, nous permet de proposer un nouveau type de dispositifs capable de détecter un signal RMN. / In this work, we explain our method based on the detection localized capacitive coupling of the electric component of the NMR signal via micro/nano probes specifically developeds. In the first stage of this work we use NEMS based on carbon nanotube to achieve a detection of the NMR signal at the nanoscale. Because of an electromechanical coupling, we characterize these systems in field emission, and we determine experimentally their resonance frequency and shown that they are able to detect a radio signal. To use these devices in NMR, it is necessary to adapt the value of the static field B0 of the magnet to reach the value of the Larmor frequency. We found that a local excitement around these systems gives them a reliable characterization, to avoid disrupting the parasite measurements. To implement this localized excitation, we choose a micro-probe (coaxial cable). First, we presente simulations, describing the propagation of electric and magnetic fields transmitted by the microprobe. After we characterize in collection mode the microprobe. This study shows us a decrease of the NMR signal as a function as distance. This proves that the microprobe is able to detect an NMR signal in near field, while the coil picks up globally. We characterize the microprobe in the transmit mode . These measurements provide us with a model that describes an inhomogeneous excitation of nuclei, due to the emission of power in vicinity of the microprobe. An inhomogeneous distribution of tilt angles induces an inhomogeneous distribution of the NMR signal around the microprobe. At the end of this thesis, we conducte two applications such as direct studies on the characterization of the microprobe. The first consist to image a small volume of water placed in silicone oil sample. The image obtained by mechanically moving of the microprobe and making a localized spectroscopy. In the second experiment, the microprobe injected into this volume and detects after the NMR signal. Finally, the characterization in transmit mode of the microprobe allows us to better understand the phenomenon of the trasmission of electromagnetic waves to excite the spins of the nuclei in vicinity of the NEMS based on CNT. The latter being used as NMR probe at the nanoscale, to detect a NMR signal.
|
3 |
Contrôle quantique de la rotation moléculaire et de processus de Résonance Magnétique Nucléaire / Qauntum control of molecular rotation and of processes in Nuclear Magnetic ResonanceHamraoui, Khalid 17 April 2019 (has links)
L’objectif de cette thèse est d’appliquer des méthodes de contrôle quantique pour manipuler la dynamique rotationnelle de molécules et améliorer l’efficacité de processus en résonance magnétique nucléaire.Ces techniques ont été utilisées théoriquement et expérimentalement pour contrôler l’orientation d’une molécule toupie symétrique à l’aide de champ THz. Cette étude a été généralisée à une grande distance d’interaction entre le champ et l’échantillon. Dans ce cas, la molécule ne peut plus être considérée comme isolée. Nous avons également montré jusqu'à quel point l’évolution temporelle du degré d’orientation pouvait être mise en forme. Des méthodes de contrôle optimal ont permis de déterminer le champ THz pour atteindre cet état à la fois à températures nulle et non-nulle. Un autre chapitre présente un nouvel algorithme d’optimisation pour les dynamiques périodiques. Cet algorithme est appliqué à la maximisation du SNR en RMN. Un dernier chapitre est dédié à un article de vulgarisation sur l’effet de la raquette de tennis. Cet effet géométrique peut être observé dans tout corps rigide suffisamment asymétrique. / The goal of this thesis is to apply quantum control techniques to manipulate molecular rotation and to enhance the efficiency of processes in Nuclear Magnetic Resonance.These techniques have been used theoretically and experimentally to control the orientation of a symmetric top molecule by means of THz laser fields. This study has been extended to the case of a long interaction distance between the field and the sample. In this case, the molecule cannot be approximated as isolated. We have also shown the extend to which the time evolution of the degree of orientation can be shaped. Optimal control techniques were used to design the THz field which allows to reach the corresponding dynamics, both at zero and non zero temperatures. Another chapter proposes a new optimization algorithm in the case of periodic quantum dynamics. We apply this algorithm to the maximization of the SNR in NMR. A last chapter is dedicated to a popular paper about the tennis racket effect. This geometric effect can be observed in any asymetric rigid body.
|
4 |
Étude des micro/nano sondes pour la Résonance Magnétique Nucléaire (RMN)Akel, Mohamad 17 December 2013 (has links) (PDF)
Dans ce travail, nous exposons une méthode basée sur la détection localisée en couplage capacitif de la composante électrique du signal RMN via des micro/nano sondes spécifiquement développées. Dans la première étape de ce travail nous avons utilisé des NEMS à base de nanotube de carbone pour réaliser une détection du signal RMN à l'échelle nanométrique. En effet, grâce à un couplage électromécanique, nous avons caractérisé ces systèmes en émission de champ, déterminé expérimentalement leur fréquence de résonance et montré qu'ils sont capables de détecter un signal radiofréquence. Pour utiliser ces dispositifs en RMN, l'adaptation du champ statique B0 de l'aimant pour atteindre la valeur de la fréquence de Larmor d'un atome est nécessaire. L'excitation locale autour de ces systèmes permettra une caractérisation complète et fiable. Pour mettre en place cette excitation localisée, nous avons choisi, dans la deuxième étape de cette thèse, une sonde locale de champ électromagnétique à l'échelle micrométrique. D'abord, nous présentons des simulations autour de la microsonde, décrivant la propagation des champs électrique et magnétique injectée par la microsonde. Nous avons caractérisé la microsonde en mode collection. Nous montrons une décroissance de l'intensité du signal RMN, en fonction de la distance. Nous avons observé et modélisé démontrant ainsi que La microsonde est capable de détecter localement un signal RMN tandis que la bobine capte de façon globale. Nous présentons les premières expériences de l'utilisation de la microsonde en mode émission. Ces mesures nous fournissent un modèle qui décrit une excitation inhomogène, dûe à l'émission locale de la puissance (décroissance exponentielle de la puissance), proche de la microsonde. Une distribution des angles de basculement est répartie d'une façon inhomogène induisant une distribution des intensités du signal RMN autour de la microsonde. À la fin de cette thèse, nous avons réalisé deux expériences comme applications directes suite des études sur la caractérisation de la microsonde. La première consiste à imager un volume d'eau placé dans un bain d'huile de silicone. L'image est obtenue en déplaçant mécaniquement la microsonde et en réalisant pour chaque point une mesure de spectroscopie localisée. Dans la deuxième expérience, la microsonde est utilisée pour injecter dans ce volume d'eau des impulsions électromagnétiques et détecte à la suite le signal RMN. Notre étude sur la caractérisation de l'émission locale par une microsonde et la détection du signal radiofréquence par un NEMS à base de NTC, nous permet de proposer un nouveau type de dispositifs capable de détecter un signal RMN.
|
Page generated in 0.0265 seconds