• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 69
  • 69
  • 64
  • 63
  • 44
  • 17
  • 14
  • 14
  • 14
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Fabrication and Automation of a Power-Conserving USV in Moving Water

Joseph Peter Wichlinski (11015460) 23 July 2021 (has links)
Water pollution in drinking water is a major concern in rural areas that depend on local surface and ground water supplies. The Amazon river, for example, has800 thousand rural inhabitants, many of whom do not have access to treated water. Reaching the Amazon River to collect these water samples is already a complicated task. With constantly changing floodplains, and therefore water quality, the ability to collect water samples remotely and autonomously can help rural areas monitor their drinking water. There have been several studies investigating different unmanned surface vehicle (USV)prototypes and data collection methods. However, none have specifically made a compact USV to maneuver in rivers, while aiming to conserve energy to drive longer distances. This paper describes an in-depth design, fabrication, and automation process for a USV to drive in the Wabash River. The USV monitors its own location, speed, and battery voltage for power consumption analysis. As proof of concept, the USV measures water depth during field studies performed in Lake Harner, Indiana and the Wabash River. These field studies yield affirming results for the controls logic and power conservation of the designed USV.<br>
32

Multi-Scale, Multi-Modal, High-Speed 3D Shape Measurement

Yatong An (6587408) 10 June 2019 (has links)
<div>With robots expanding their applications in more and more scenarios, practical problems from different scenarios are challenging current 3D measurement techniques. For instance, infrastructure inspection robots need large-scale and high-spatial-resolution 3D data for crack and defect detection, medical robots need 3D data well registered with temperature information, and warehouse robots need multi-resolution 3D shape measurement to adapt to different tasks. In the past decades, a lot of progress has been made in improving the performance of 3D shape measurement methods. Yet, measurement scale and speed and the fusion of multiple modalities of 3D shape measurement techniques remain vital aspects to be improved for robots to have a more complete perception of the real scene. In this dissertation, we will focus on the digital fringe projection technique, which usually can achieve high-accuracy 3D data, and expand the capability of that technique to complicated robot applications by 1) extending the measurement scale, 2) registering with multi-modal information, and 3) improving the measurement speed of the digital fringe projection technique.</div><div><br></div><div>The measurement scale of the digital fringe projection technique mainly focused on a small scale, from several centimeters to tens of centimeters, due to the lack of a flexible and convenient calibration method for a large-scale digital fringe projection system. In this study, we first developed a flexible and convenient large-scale calibration method and then extended the measurement scale of the digital fringe projection technique to several meters. The meter scale is needed in many large-scale robot applications, including large infrastructure inspection. Our proposed method includes two steps: 1) accurately calibrate intrinsics (i.e., focal lengths and principal points) with a small calibration board at close range where both the camera and projector are out of focus, and 2) calibrate the extrinsic parameters (translation and rotation) from camera to projector with the assistance of a low-accuracy large-scale 3D sensor (e.g., Microsoft Kinect). The two-step strategy avoids fabricating a large and accurate calibration target, which is usually expensive and inconvenient for doing pose adjustments. With a small calibration board and a low-cost 3D sensor, we calibrated a large-scale 3D shape measurement system with a FOV of (1120 x 1900 x 1000) mm^3 and verified the correctness of our method.</div><div><br></div><div> Multi-modal information is required in applications such as medical robots, which may need both to capture the 3D geometry of objects and to monitor their temperature. To allow robots to have a more complete perception of the scene, we further developed a hardware system that can achieve real-time 3D geometry and temperature measurement. Specifically, we proposed a holistic approach to calibrate both a structured light system and a thermal camera under exactly the same world coordinate system, even though these two sensors do not share the same wavelength; and a computational framework to determine the sub-pixel corresponding temperature for each 3D point, as well as to discard those occluded points. Since the thermal 2D imaging and 3D visible imaging systems do not share the same spectrum of light, they can perform sensing simultaneously in real time. We developed a hardware system that achieved real-time 3D geometry and temperature measurement at 26Hz with 768 x 960 points per frame.</div><div><br></div><div> In dynamic applications, where the measured object or the 3D sensor could be in motion, the measurement speed will become an important factor to be considered. Previously, people projected additional fringe patterns for absolute phase unwrapping, which slowed down the measurement speed. To achieve higher measurement speed, we developed a method to unwrap a phase pixel by pixel by solely using geometric constraints of the structured light system without requiring additional image acquisition. Specifically, an artificial absolute phase map $\Phi_{min}$, at a given virtual depth plane $z = z_{min}$, is created from geometric constraints of the calibrated structured light system, such that the wrapped phase can be pixel-by-pixel unwrapped by referring to $\Phi_{min}$. Since $\Phi_{min}$ is defined in the projector space, the unwrapped phase obtained from this method is an absolute phase for each pixel. Experimental results demonstrate the success of this proposed novel absolute-phase unwrapping method. However, the geometric constraint-based phase unwrapping method using a virtual plane is constrained in a certain depth range. The depth range limitations cause difficulties in two measurement scenarios: measuring an object with larger depth variation, and measuring a dynamic object that could move beyond the depth range. To address the problem of depth limitation, we further propose to take advantage of an additional 3D scanner and use additional external information to extend the maximum measurement range of the pixel-wise phase unwrapping method. The additional 3D scanner can provide a more detailed reference phase map $\Phi_{ref}$ to assist us to do absolute phase unwrapping without the depth constraint. Experiments demonstrate that our method, assisted by an additional 3D scanner, can work for a large depth range, and the maximum speed of the low-cost 3D scanner is not necessarily an upper bound of the speed of the structured light system. Assisted by Kinect V2, our structured light system achieved 53Hz with a resolution 1600 x 1000 pixels when we measured dynamic objects that were moving in a large depth range.</div><div><br></div><div> In summary, we significantly advanced the 3D shape measurement technology for robots to have a more complete perception of the scene by enhancing the digital fringe projection technique in measurement scale (space domain), speed (time domain), and fusion with other modality information. This research can potentially enable robots to have a better understanding of the scene for more complicated tasks, and broadly impact many other academic studies and industrial practices.</div>
33

An Analysis of a Pressure Compensated Control System of an Automotive Vane Pump

Ryan P Jenkins (6331784) 10 June 2019 (has links)
<div>Pressure compensated vane pump systems are an attractive solution in many automotive applications to supply hydraulic power required for cooling, lubrication, and actuation of control elements such as transmission clutches. These systems feature variable displacement vane pumps which offer reductions in parasitic loads on the engine and in wasted hydraulic energy at high engine speeds when compared to traditional fixed displacement supply pumps. However, oscillations in a currently available pressure compensation system limits the achievable performance and therefore the application of this solution.</div><div>This dissertation presents the development and experimental validation of a lumped parameter model in MATLAB/Simulink of a current pressure compensated vane pump system for an automatic transmission oil supply application. An analysis of the performance of this system using the validated pump model and a developed black box control system model reveals that the low cost solenoid valve present in the control circuit to set the regulation pressure limits the achievable bandwidth to 1.84Hz and causes a significant time delay in the response. To address this limitation, as well as eliminate a non-minimum phase zero introduced by the case study’s control circuit architecture, an actively controlled electrohydraulic pressure compensation system is proposed. This proposed system is explored both experimentally and in simulation making use of the accuracy of the presented variable displacement vane pump model. Significant improvements in the achievable system performance are shown with both a simple PI control law (47% reduction in the pressure response time) and an advanced cascaded model following controller based on feedback linearization (58% reduction in the pressure response time). An analysis of these results reveals that implementing the proposed control system with a 5(L/min)/bar proportional valve with a 20Hz at ±100% (60Hz at ±50%) amplitude bandwidth and a PI control law is an economical path to achieving the best performance improvements for this automotive application.</div>
34

Linking urban mobility with disease contagion in urban networks

Xinwu Qian (5930165) 17 January 2019 (has links)
<div>This dissertation focuses on developing a series of mathematical models to understand the role of urban transportation system, urban mobility and information dissemination in the spreading process of infectious diseases within metropolitan areas. Urban transportation system serves as the catalyst of disease contagion since it provides the mobility for bringing people to participate in intensive urban activities and has high passenger volume and long commuting time which facilitates the spread of contagious diseases. In light of significant needs in understanding the connection between disease contagion and the urban transportation systems, both macroscopic and microscopic models are developed and the dissertation consists of three main parts. </div><div></div><div>The first part of the dissertation aims to model the macroscopic level of disease spreading within urban transportation system based on compartment models. Nonlinear dynamic systems are developed to model the spread of infectious disease with various travel modes, compare models with and without contagion during travel, understand how urban transportation system may facilitate or impede epidemics, and devise control strategies for mitigating epidemics at the network level. The hybrid automata is also introduced to account for systems with different levels of control and with uncertain initial epidemic size, and reachability analysis is used to over-approximate the disease trajectories of the nonlinear systems. The 2003 Beijing SARS data are used to validate the effectiveness of the model. In addition, comprehensive numerical experiments are conducted to understand the importance of modeling travel contagion during urban disease outbreaks and develop control strategies for regulating the entry of urban transportation system to reduce the epidemic size. </div><div></div><div>The second part of the dissertation develops a data-driven framework to investigate the disease spreading dynamics at individual level. In particular, the contact network generation algorithm is developed to reproduce individuals' contact pattern based on smart card transaction data of metro systems from three major cities in China. Disease dynamics are connected with contact network structures based on individual based mean field and origin-destination pair based mean field approaches. The results suggest that the vulnerability of contact networks solely depends on the risk exposure of the most dangerous individual, however, the overall degree distribution of the contact network determines the difficulties in controlling the disease from spreading. Moreover, the generation model is proposed to depict how individuals get into contact and their contact duration, based on their travel characteristics. The metro data are used to validate the correctness of the generation model, provide insights on monitoring the risk level of transportation systems, and evaluate possible control strategies to mitigate the impacts due to infectious diseases. </div><div></div><div>Finally, the third part of the dissertation focuses on the role played by information in urban travel, and develops a multiplex network model to investigate the co-evolution of disease dynamics and information dissemination. The model considers that individuals may obtain information on the state of diseases by observing the disease symptoms from the people they met during travel and from centralized information sources such as news agencies and social medias. As a consequence, the multiplex networks model is developed with one layer capturing information percolation and the other layer modeling the disease dynamics, and the dynamics on one layer depends on the dynamics of the other layer. The multiplex network model is found to have three stable states and their corresponding threshold values are analytically derived. In the end, numerical experiments are conducted to investigate the effectiveness of local and global information in reducing the size of disease outbreaks and the synchronization between disease and information dynamics is discussed. </div><div></div>
35

ROBUST MULTIPLE-INPUT MULTIPLE-OUTPUT CONTROL OF GAS EXCHANGE PROCESSES IN ADVANCED INTERNAL COMBUSTION ENGINES

Sree Harsha Rayasam (5930810) 29 October 2021 (has links)
<div>Efficient engine operation is a fundamental control problem in automotive applications. Robust control algorithms are necessary to achieve satisfactory, safe engine performance</div><div>at all operating conditions while reducing emissions. This thesis develops a framework for control architecture design to enable robust air handling system management.</div><div><br></div><div>The first work in the thesis derives a simple physics-based, control-oriented model for turbocharged lean burn engines which is able to capture the critical engine dynamics that are</div><div>needed to design the controller. The control-oriented model is amenable for control algorithm development and includes the impacts of modulation to any combination of four actuators: throttle valve, bypass valve, fuel rate, and wastegate valve. The controlled outputs: engine speed, differential pressure across throttle and air-to-fuel ratio are modeled as functions of selected states and inputs. Two validation strategies, open-loop and closed-loop are used to validate the accuracy of both nonlinear and linear versions of the control-oriented model. The relative gain array is applied to the linearized engine model to understand the degree of interactions between plant inputs and outputs as well as the best input-output pairing as a function of frequency. With strong evidence of high degree of coupling between inputs and outputs, a coordinated multiple-input multiple-output (MIMO) controller is hypothesized to perform better than a single-input single-output (SISO) controller. A framework to design robust model-based H1 MIMO controllers for any given linear plant, while considering state and output multiplicative uncertainties as well as actuator bandwidths is developed. The framework also computes the singular structure value, μ for the uncertain closed-loop system to quantify robustness, both in terms of stability and performance. The multi-tracking control problem targets engine speed, differential pressure across throttle as well as air-to-fuel ratio to achieve satisfactory engine performance while also preventing compressor surge and reducing engine emissions. A controller switching methodology using slow-fast controller decomposition and hysteresis at switching points is proposed to smoothly switch control authority between several MIMO controllers. The control design approach is applied to a truth-reference GT-Power engine model to evaluate the closed-loop controller performance. The engine response obtained using the robust MIMO controller is compared with that obtained using a state-of-the-art benchmark controller to evaluate the additional benefits of the MIMO controller.</div><div><br></div><div><div>In the second study, a robust 2-degree of freedom controller that commands eBooster speed to control air-to-fuel ratio, and a robust MIMO coordinated controller to control gas</div><div>exchange process in a diesel engine with electrified air handling architecture are developed. The MIMO controller simultaneously controls engine speed, mass fraction of the recirculated exhaust gas as well as air-to-fuel ratio. The actuators available for control in the engine include the exhaust gas recirculation valve, exhaust throttle valve, fuel injection rate, eBooster speed, eBooster bypass valve. To design the robust eBooster controller, the input-output relationship between eBooster speed and air-to-fuel ratio is estimated using system identification techniques. The robust MIMO controller is synthesized using a physics-based mean value control-oriented engine model that accurately represents the high-fidelity GT-Power model. In the first control strategy, the robust eBooster controller is added to an already existing stock engine control unit while in the second control strategy, the stock engine control unit is replaced with the multiple-input multiple-output controller. The two control architectures are tested under different operating conditions to evaluate the controller performance. Simulation results with the control architectures developed in the thesis are compared to a baseline engine configuration, where the engine operates without eBooster. Although it is observed that both these control algorithms significantly improve engine performance as compared to the baseline configuration, MIMO controller provides the best engine performance overall.</div></div>
36

Cognitive Modeling for Human-Automation Interaction: A Computational Model of Human Trust and Self-Confidence

Katherine Jayne Williams (11517103) 22 November 2021 (has links)
Across a range of sectors, including transportation and healthcare, the use of automation to assist humans with increasingly complex tasks is also demanding that such systems are more interactive with human users. Given the role of cognitive factors in human decision-making during their interactions with automation, models enabling human cognitive state estimation and prediction could be used by autonomous systems to appropriately adapt their behavior. However, accomplishing this requires mathematical models of human cognitive state evolution that are suitable for algorithm design. In this thesis, a computational model of coupled human trust and self-confidence dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process that leverages behavioral and self-report data as observations for estimation of the cognitive states. The use of an asymmetrical structure in the emission probability functions enables labeling and interpretation of the coupled cognitive states. The model is trained and validated using data collected from 340 participants. Analysis of the transition probabilities shows that the model captures nuanced effects, in terms of participants' decisions to rely on an autonomous system, that result as a function of the combination of their trust in the automation and self-confidence. Implications for the design of human-aware autonomous systems are discussed, particularly in the context of human trust and self-confidence calibration.
37

A Hybrid Method for Distributed Multi-Agent Mission Planning System

Nicholas S Schultz (8747079) 22 April 2020 (has links)
<div>The goal of this research is to develop a method of control for a team of unmanned aerial and ground robots that is resilient, robust, and scalable given both complete and incomplete information of the environment. The method presented in this paper integrates approximate and optimal methods of path planning integrated with a market-based task allocation strategy. Further work presents a solution to unmanned ground vehicle path planning within the developed mission planning system framework under incomplete information. Deep reinforcement learning is proposed to solve movement through unknown terrain environment. The final demonstration for Advantage-Actor Critic deep reinforcement learning elicits successful implementation of the proposed model.</div>
38

Design and Fabrication of Soft Biosensors and Actuators

Aniket Pal (8647860) 16 June 2020 (has links)
Soft materials have gained increasing prominence in science and technology over the last few decades. This shift from traditional rigid materials to soft, compliant materials have led to the emergence of a new class of devices which can interact with humans safely, as well as reduce the disparity in mechanical compliance at the interface of soft human tissue and rigid devices.<br><br>One of the largest application of soft materials has been in the field of flexible electronics, especially in wearable sensors. While wearable sensors for physical attributes such as strain, temperature, etc. have been popular, they lack applications and significance from a healthcare perspective. Point-of-care (POC) devices, on the other hand, provide exceptional healthcare value, bringing useful diagnostic tests to the bedside of the patient. POC devices, however, have been developed for only a limited number of health attributes. In this dissertation I propose and demonstrate wireless, wearable POC devices to measure and communicate the level of various analytes in and the properties of multiple biofluids: blood, urine, wound exudate, and sweat.<br><br>Along with sensors, another prominent area of soft materials application has been in actuators and robots which mimic biological systems not only in their action but also in their soft structure and actuation mechanisms. In this dissertation I develop design strategies to improve upon current soft robots by programming the storage of elastic strain energy. This strategy enables us to fabricate soft actuators capable of programmable and low energy consuming, yet high speed motion. Collectively, this dissertation demonstrates the use of soft compliant materials as the foundation for developing new sensors and actuators for human use and interaction.
39

Stereo vision-based system for detection, track and capture of intruder flying drones

Maria Nieves Brunet Avalos (8800964) 06 May 2020 (has links)
<div>In this thesis, the design and implementation of an autonomous system that will equip a multi-rotor unmanned aerial vehicle (UAV) for visual detection and tracking of other UAVs is presented. The results from detection and tracking are used for real-time motion planning.</div><div><br></div><div>The goal is to effectively detect unwanted UAVs, track them and finally capture them with a net. Having a net that traps the UAVs and enables dragging intruders to another location is of great importance, since these could be carrying dangerous loads.</div><div><br></div><div>The project consists of three main tasks: object detection using a stereo camera, video tracking using a Kalman filter based algorithm, and lastly executing an optimal flight plan to aim a net at the detected intruder UAV. The computer vision, motion tracking and planning algorithms are implemented as ROS nodes what makes them executable on a reduced size onboard computer that is installed on the aerial vehicle.</div><div><br></div><div>Previous work related to this project consists of either a UAV detection system with computationally heavy algorithms or a tracking algorithm that does not include information about the dynamics of the UAVs. For the capture methods, previous ideas do not consider autonomous decisions or an optimized method to guarantee capture. In this thesis, these three aspects are considered to develop a simple solution that can be mounted on any commercially available UAV.</div>
40

Development of Learning Control Strategies for a Cable-Driven Device Assisting a Human Joint

Hao Xiong (7954217) 25 November 2019 (has links)
<div>There are millions of individuals in the world who currently experience limited mobility as a result of aging, stroke, injuries to the brain or spinal cord, and certain neurological diseases. Robotic Assistive Devices (RADs) have shown superiority in helping people with limited mobility by providing physical movement assistance. However, RADs currently existing on the market for people with limited mobility are still far from intelligent.</div><div><br></div><div>Learning control strategies are developed in this study to make a Cable-Driven Assistive Device (CDAD) intelligent in assisting a human joint (e.g., a knee joint, an ankle joint, or a wrist joint). CDADs are a type of RADs designed based on Cable-Driven Parallel Robots (CDPRs). A PID–FNN control strategy and DDPG-based strategies are proposed to allow a CDAD to learn physical human-robot interactions when controlling the pose of the human joint. Both pose-tracking and trajectory-tracking tasks are designed to evaluate the PID–FNN control strategy and the DDPG-based strategies through simulations. Simulations are conducted in the Gazebo simulator using an example CDAD with three degrees of freedom and four cables. Simulation results show that the proposed PID–FNN control strategy and DDPG-based strategies work in controlling a CDAD with proper learning.</div>

Page generated in 0.1587 seconds