• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 415
  • 239
  • 214
  • 2
  • Tagged with
  • 867
  • 344
  • 325
  • 317
  • 289
  • 280
  • 238
  • 224
  • 178
  • 173
  • 129
  • 116
  • 116
  • 111
  • 104
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Suivi 3D Robuste pour la Chirurgie Cardiaque Robotisée / Robust 3D Motion Tracking for Robotic-Assisted Beating Heart Surgery

Richa, Rogério de Almeida 23 March 2010 (has links)
Les dernières décennies ont vu le développement important de la chirurgie mini-invasive. L'acte mini-invasif apporte de nombreux avantages pour les patients: séjour plus court à l'hôpital, réduction des coûts, un traumatisme réduit et la diminution des complications postopératoires. Dans ce contexte, l'assistance robotique est capable de rendre l'acte chirurgical plus intuitif et plus sûr pour les chirurgiens. Dans le domaine de la chirurgie cardiaque mini-invasive, les mouvements respiratoires et cardiaques sont deux sources de perturbations importantes pour les chirurgiens. Malgré l'existence de versions miniaturisées de stabilisateurs cardiaques mécaniques, le mouvement résiduel est encore considérable et doit être manuellement compensé par le chirurgien. Dans ces travaux de thèse, des techniques de suivi visuel pour l'estimation du mouvement 3D du coeur ont été développées. Pour la compensation active des mouvements physiologiques, seules les structures naturelles sur la surface du coeur sont utilisées. Deux contributions dans le domaine de la compensation des mouvements physiologiques pour la chirurgie cardiaque robotisée ont été proposées. La première est une méthode de suivi visuel 3D basée sur un modèle déformable de type ``plaque mince'' et une paramétrisation efficace pour le suivi 3D en images stéréo-endoscopiques. La seconde contribution est une méthode de suivi robuste qui prédit le mouvement futur du coeur pour contourner des problèmes comme les occlusions par les instruments chirurgicaux et les éventuelles réflexions spéculaires. La méthode de prédiction est basée sur une série de Fourier estimée à travers un filtre de Kalman étendu. / The past decades have witnessed the notable development of minimally invasive surgery (MIS). The benefits of this modality of surgery for patients are numerous, shortening convalescence, reducing trauma and surgery costs. In this context, robotic assistance aims to make the surgical act more intuitive and safer. In the domain of cardiac MIS, heartbeat and respiration represent two important sources of disturbances. Even though miniaturized versions of heart stabilizers have been conceived for the MIS scenario, residual motion is still considerable and has to be manually canceled by the surgeon. In this thesis, the focus is put on computer vision techniques for estimating the 3D motion of the heart relying solely on natural structures on the heart surface for active compensation of physiological motions. Two main contributions on the subject of motion compensation for robotized cardiac MIS are proposed. The first is a visual tracking method for estimating the 3D deformation of a region of interest on the heart surface. A thin-plate spline model is used for representing the heart surface deformations and a novel efficient parameterization for 3D tracking using stereo endoscopic images is proposed. The method is robust to illumination variations and large tissue deformations. The second contribution is a robust visual tracking method using motion prediction. A time-varying dual Fourier series for modeling the quasi-periodic beating heart motion is proposed. For estimating the parameters of the Fourier series, a probabilistic framework is based on the Extended Kalman filter (EKF) is used. The visual tracking method is integrated in the heart motion prediction framework, creating an unified framework for estimating the temporal motion and spatial deformation of the heart surface. Experimental results have shown the effectiveness of the proposed methods.
202

Optimisation du séquencement de tâches avec lissage du mouvement dans la réalisation de missions autonomes ou collaboratives d’un humanoïde virtuel ou robotique / Optimization of motion overlapping for task sequencing

Keith, François 10 December 2010 (has links)
La réalisation d'une mission robotique se décompose usuellement en trois étapes: la planification, i.e. le choix des taches à réaliser, le séquencement, i.e. la détermination du timing et de l'ordre de réalisation des tâches, et finalement l'exécution du plan de tâches. Pour les systèmes redondants tels que les robots humanoïdes, la tâche (dans le sens de fonction de tâche) détermine une commande sur une partie du robot, permettant ainsi la réalisation simultanée de plusieurs tâches à l'aide d'un formalisme de pile de tâches. Cependant, les mécanismes d'ordonnancement classiques ne gèrent pas les cas où le mouvement est déterminé par un ensemble de tâches hiérarchisé: pour ces robots, la phase d'ordonnancement est éludée et l'exécution se base directement sur la plan de tâches donné par le planificateur. Le but de cette thèse est de réintroduire cette phase d'ordonnancement, tout en maintenant le rôle central de la tâche. Dans un premier temps, la continuité de la commande fournie par la pile de tâches est étudiée. En particulier, nous mettons en évidence les discontinuités accompagnant la réalisation d'événements discrets (à savoir l'insertion, le retrait et l'échange de priorité de tâches), puis proposons et comparons plusieurs méthodes de lissage. Ensuite, nous présentons une méthode permettant d'optimiser une séquence de tâches donnée en modifiant le timing et la paramétrisation des tâches, tout en respectant les contraintes liées à l'environnement. Enfin, une nouvelle utilisation de la flexibilité de la fonction de tâche consistant à adapter une séquence de tâches aux préférences d'un utilisateur humain est illustrée. Ces résultats sont illustrés sur un robot humanoïde. / A general agreed approach on mission and motion planning consists in splitting it into three steps: decomposing the mission into a sequence of tasks (task planning), determining the order of realization and the timing of the tasks (task scheduling) and finally executing the task sequence. This approach maintains the task component in the entire reasoning, using it as a bridge between planning, scheduling and execution.In the sense of task function, a task defines a control law on part of the robot. Hence, for highly redundant systems such as humanoid robots, it is possible to realize several tasks simultaneously using a stack-of-tasks formalism. Though, classical schedulers do not handle the case where the motion is specified not by one, but by a combination of tasks organized into a hierarchy. As a result, the scheduling phase is usually skipped. This thesis aims at reintroducing the scheduling phase, while maintaining the central role of the task.First, the stack-of-tasks formalism is recalled and the continuity of the control law is studied. Particularly, we show that discreet operations (insertion, removal and swap of priority between tasks) create discontinuities in the control. We then present and discuss smoothing methods. Second, we present a task-overlapping based method to optimize not only the scheduling but also the behavior of the tasks of a given sequence, while accounting for the physical constraint of the execution. Finally, we introduce a new perspective in the usage of the task-function approach the task function approach to personalize a task sequence and take into account user preferences.These results are experimented on the humanoid robot platform HRP-2.
203

Génération de Posture Multi-Contact Viable pour Robot Humanoïde par Optimisation non-linéaire sur Variétés / Viable Multi-Contact Posture Computation for Humanoid Robots using Nonlinear Optimization on Manifolds

Brossette, Stanislas 10 October 2016 (has links)
Un robot humanoïde est un système polyarticulé complexe dont la cinématique et la dynamique sont gouvernées par des équations non linéaires. Trouver des postures viables qui minimisent une tâche objectif tout en satisfaisant un ensemble de contraintes (intrinsèques ou extrinsèques) est un problème central pour la planification de mouvement robotique et est une fonctionnalité importante de tout logiciel de robotique. Le générateur de posture (PG) a pour rôle de trouver une posture viable en formulant puis résolvant un problème d’optimisation non linéaire. Nous étendons l’état de l’art en proposant de nouvelles formulations et méthodes de résolution de problèmes de génération de postures. Nous enrichissons la formulation de contraintes de contact par ajout de variables au problème d’optimisation, ce qui permet au solveur de décider automatiquement de la zone d’intersection entre deux polygones en contact ou encore de décider du lieu de contact sur une surface non plane. Nous présentons une reformulation du PG qui gère nativement les variétés non Euclidiennes et nous permet de formuler des problèmes mathématiques plus élégants et efficaces. Pour résoudre de tels problèmes, nous avons développé un solveur non linéaire par SQP qui supporte nativement les variables sur variétés. Ainsi, nous avons une meilleure maîtrise de notre solveur et pouvons le spécialiser pour la résolution de problèmes de robotique. / Humanoid robots are complex poly-articulated structures whose kinematics and dynamics are governed by nonlinear equations. Finding viable postures to realize set-point task objectives under a set of constraints (intrinsic and extrinsic limitations) is a key issue in the planning of robot motion and an important feature of any robotics framework. It is handled by the so called posture generator (PG) that consists in formalizing the viable posture as the solution to a nonlinear optimization problem. We present several extensions to the state-of-the-art by exploring new formulations and resolution methods for the posture generation problems. We reformulate the notion of contact constraints by adding variables to enrich our optimization problem and allow the solver to decide on the shape of the intersection of contact polygons or of the location of a contact point on a non-flat surface. We present a reformulation of the PG problem that encompasses non-Euclidean manifolds natively for a more elegant and efficient mathematical formulation of the problems. To solve such problems, we decided to implement a new SQP solver that is most suited to non-Euclidean manifolds structural objects. By doing so, we have a better mastering in the way to tune and specialize our solver for robotics problems.
204

Développement d'un système robotique pour des essais au sol du système de contrôle d'attitude et d'orbite d'un CubeSat / Development of a robotic system for CubeSat Attitude Determination and Control System ground tests

Gavrilovich, Irina 14 December 2016 (has links)
Après le lancement du premier satellite artificiel en 1957, l'évolution de diverses technologies a favorisé la miniaturisation des satellites. En 1999, le développement des nano-satellites modulaires appelés CubeSats, qui ont la forme d'un cube d'un décimètre de côté et une masse de 1 kg à 10 kg, a été initié par un effort commun de l'Université polytechnique de Californie et de l'Université de Stanford. Depuis lors, grâce à l’utilisation de composants électroniques standards à faible coût, les CubeSats se sont largement répandus.Au cours des dernières années, le nombre de CubeSats lancés a régulièrement augmenté, mais moins de la moitié des missions ont atteint leurs objectifs. L'analyse des défaillances des CubeSats montre que la cause la plus évidente est le manque d’essais adéquats des composants du système ou du système au complet. Parmi les tâches particulièrement difficiles, on compte les essais « hardware-in-the-loop » (HIL) du système de contrôle d'attitude et d'orbite (SCAO) d’un CubeSat. Un système dédié à ces essais doit permettre des simulations fiables de l'environnement spatial et des mouvements réalistes des CubeSats. La façon la plus appropriée d’obtenir de telles conditions d’essai repose sur l’utilisation d’un coussin d'air. Toutefois, les mouvements du satellite sont alors contraints par les limites géométriques, qui sont inhérentes aux coussins d'air. De plus, après 15 années de développements de CubeSats, la liste des systèmes proposés pour tester leur SCAO reste très limitée.Aussi, cette thèse est consacrée à l’étude et à la conception d’un système robotique innovant pour des essais HIL du SCAO d’un CubeSat. La nouveauté principale du système d'essai proposé est l’usage de quatre coussins d'air au lieu d'un seul et l’emploi d’un robot manipulateur. Ce système doit permettre des mouvements non contraints du CubeSat. Outre la conception du système d'essai, cette thèse porte sur les questions liées: (i) à la détermination de l'orientation d’un CubeSat au moyen de mesures sans contact; (ii) au comportement de l’assemblage des coussins d'air; (iii) à l'équilibrage des masses du système.Afin de vérifier la faisabilité de la conception proposée, un prototype du système d'essai a été développé et testé. Plusieurs modifications destinées à en simplifier la structure et à réduire le temps de fabrication ont été effectuées. Un robot Adept Viper s650 est notamment utilisé à la place d'un mécanisme sphérique spécifiquement conçu. Une stratégie de commande est proposée dans le but d’assurer un mouvement adéquat du robot qui doit suivre les rotations du CubeSat. Finalement, les résultats obtenus sont présentés et une évaluation globale du système d'essai est discutée. / After the launch of the first artificial Earth satellite in 1957, the evolution of various technologies has fostered the miniaturization of satellites. In 1999, the development of standardized modular satellites with masses limited to a few kilograms, called CubeSats, was initiated by a joint effort of California Polytechnic State University and Stanford University. Since then, CubeSats became a widespread and significant trend, due to a number of available off-the-shelf low cost components.In last years, the number of launched CubeSats constantly grows, but less than half of all CubeSat missions achieved their goals (either partly or completely). The analysis of these failures shows that the most evident cause is a lack of proper component-level and system-level CubeSat testing. An especially challenging task is Hardware-In-the-Loop (HIL) tests of the Attitude Determination and Control System (ADCS). A system devoted to these tests shall offer reliable simulations of the space environment and allow realistic CubeSat motions. The most relevant approach to provide a satellite with such test conditions consists in using air bearing platforms. However, the possible satellite motions are strictly constrained because of geometrical limitations, which are inherent in the air bearing platforms. Despite 15 years of CubeSat history, the list of the air bearing platforms suitable for CubeSat ADCS test is very limited.This thesis is devoted to the design and development of an air bearing testbed for CubeSat ADCS HIL testing. The main novelty of the proposed testbed design consists in using four air bearings instead of one and in utilizing a robotic arm, which allows potentially unconstrained CubeSat motions. Besides the testbed design principle, this thesis deals with the related issues of the determination of the CubeSat orientation by means of contactless measurements, and of the behavior of the air bearings, as well as with the need of a mass balancing method.In order to verify the feasibility of the proposed design, a prototype of the testbed is developed and tested. Several modifications aimed at simplifying the structure and at shortening the fabrication timeline have been made. For this reason, the Adept Viper s650 robot is involved in place of a custom-designed 4DoF robotic arm. A control strategy is proposed in order to provide the robot with a proper motion to follow the CubeSat orientation. Finally, the obtained results are presented and the overall assessment of the proposed testbed is put into perspective.
205

Robot assisted steering of flexible needles for percutaneous procedures / Guidage robotisé des aiguilles fexibles pour des procédures percutanées

Bernardes, Mariana 19 December 2012 (has links)
Les travaux de cette thèse proposent une nouvelle approche pour le guidage assisté par robots d'aiguilles flexibles pour des procédures percutanées. La méthode est basée sur l'utilisation d'une rotation de l'aiguille avec un rapport cyclique variable pour réaliser une insertion avec des arcs de rayons de courbure différents. Elle combine un retour visuel avec une stratégie de planification adaptative pour compenser les incertitudes du système et les perturbations. Par rapport aux approches présentées précédemment dans la littérature, la stratégie de planification en boucle fermée est adaptée à des scènes dynamiques qui présentent des changements de position des obstacles et de la cible. Cette approche a été implémentée sur un système robotique et les résultats obtenus in vitro confirment tout l'intérêt de cette technique. / This thesis proposes a robot-assisted approach for automatic steering of flexible beveled needles in percutaneous procedures. The method uses duty-cycled rotation of the needle to perform insertion with arcs of adjustable curvature, and combines closed-loop imaging feedback with an intraoperative motion replanning strategy to compensate for system uncertainties and disturbances. Differently from previous approaches, the closed-loop replanning strategy is suitable for dynamic scenes that present changes of obstacles and target positions. Indeed, we implemented the proposed system using a robotic manipulator, and the results obtained from in vitro tests confirmed the viability of our method.
206

Contact force sensing from motion tracking / Capture de forces de contact par capture de mouvement

Pham, Tu-Hoa 09 December 2016 (has links)
Le sens du toucher joue un rôle fondamental dans la façon dont nous percevons notre environnement, nous déplaçons, et interagissons délibérément avec d'autres objets ou êtres vivants. Ainsi, les forces de contact informent à la fois sur l'action réalisée et sa motivation. Néanmoins, l'utilisation de capteurs de force traditionnels est coûteuse, lourde, et intrusive. Dans cette thèse, nous examinons la perception haptique par la capture de mouvement. Ce problème est difficile du fait qu'un mouvement donné peut généralement être causé par une infinité de distributions de forces possibles, en multi-contact. Dans ce type de situations, l'optimisation sous contraintes physiques seule ne permet que de calculer des distributions de forces plausibles, plutôt que fidèles à celles appliquées en réalité. D'un autre côté, les méthodes d'apprentissage de type `boîte noire' pour la modélisation de structures cinématiquement et dynamiquement complexes sont sujettes à des limitations en termes de capacité de généralisation. Nous proposons une formulation du problème de la distribution de forces exploitant ces deux approches ensemble plutôt que séparément. Nous capturons ainsi la variabilité dans la façon dont on contrôle instinctivement les forces de contact tout en nous assurant de leur compatibilité avec le mouvement observé. Nous présentons notre approche à la fois pour la manipulation et les interactions corps complet avec l'environnement. Nous validons systématiquement nos résultats avec des mesures de référence et fournissons des données exhausives pour encourager et évaluer les travaux futurs sur ce nouveau sujet. / The human sense of touch is of fundamental importance in the way we perceive our environment, move ourselves, and purposefully interact with other objects or beings. Thus, contact forces are informative on both the realized task and the underlying intent. However, monitoring them with force transducers is a costly, cumbersome and intrusive process. In this thesis, we investigate the capture of haptic information from motion tracking. This is a challenging problem, as a given motion can generally be caused by an infinity of possible force distributions in multi-contact. In such scenarios, physics-based optimization alone may only capture force distributions that are physically compatible with a given motion, rather than those really applied. In contrast, machine learning techniques for the black-box modelling of kinematically and dynamically complex structures are often prone to generalization issues. We propose a formulation of the force distribution problem utilizing both approaches jointly rather than separately. We thus capture the variability in the way humans instinctively regulate contact forces while also ensuring their compatibility with the observed motion. We present our approach on both manipulation and whole-body interaction with the environment. We consistently back our findings with ground-truth measurements and provide extensive datasets to encourage and serve as benchmarks for future research on this new topic.
207

Contribution à l'autonomie des robots : vers la garantie de performance en robotique mobile autonome par la gestion des ressources matérielles et logicielles / Contribution to robot autonomy : Toward performance guarantee for autonomous mobile robotics by hardware and software resources management

Jaïem, Lotfi 21 November 2016 (has links)
La performance est un concept multiforme largement décliné et défini en robotique de manipulation où il relève de contraintes spécifiques : environnement non dynamique de dimensions limitées, énergie infinie. Les indicateurs de performance proposés dans le cadre de missions robotiques terrestres sont moins largement acceptés.Pour notre part nous les déclinons en axes principaux : énergie, sécurité, localisation, stabilité, et secondaires : durée par exemple.Dans le cadre de ce travail nous nous intéressons à des missions robotiques soumises à des contraintes de performance liées à la durée, la sécurité et l'énergie dans un environnement connu mais dynamique.La déclinaison des contraintes imposées à la mission et au robot permet de décomposer la mission en une suite d'activités aux contraintes invariantes. Chacune de ces activités pouvant être réalisée à l'aide d'un ensemble de tâches robotiques (se déplacer, se localiser, analyser une image, etc.) pouvant elles-mêmes être implémentées de différentes façons en fonction des actionneurs, capteurs ou algorithmes pouvant être utilisés.Le problème adressé est le suivant : comment choisir les ressources matérielles et logicielles à utiliser tout au long de la mission de façon à vérifier les contraintes de performance imposées ? C'est un problème de sac à dos multicritères NP-Complet et l'espace de recherche devient très rapidement inexplorable. De façon à proposer et garantir une solution applicable sous des contraintes temps réel, nous faisons appel à un algorithme permettant de trouver un ensemble ordonné de bonnes solutions en temps linéaire.L'approche de gestion de ressources proposée a été implémentée sur un robot Pioneer-3DX et une architecture de contrôle s'appuyant sur le Middleware ContrACT.Cette approche a été validée dans le cadre d'une mission de patrouille d'une longueur de 200 m et durant une dizaine de minutes, au sein du laboratoire LIRMM, pour vérifier l'état de vannes.Pour la mission choisie, l'espace d'états à considérer est supérieur à 10^{14}.Tout au long de la mission, les ressources matérielles et logicielles sont choisies dynamiquement et d'une façon autonome afin de satisfaire les contraintes de performance imposées.Si des ressources ne sont plus opérationnelles, ou si trop d'évitements d'obstacles non prévus sont effectués, l'approche développée est capable de trouver en ligne une nouvelle solution d'affectation des ressources vérifiant les contraintes de performance imposées, si elle existe.Ces travaux participant donc à l'accroissement du niveau de tolérance aux fautes du système robotisé. / The performance is a multi-form concept widely defined in manufacturing robotics with specific environment conditions (static and perfectly known) and infinite energy).However, performance indicators proposed in mobile robotics are less widely accepted.We differenciate between main performance axes (energy, safety, localization and stability) and secondary performance axes (duration for example).In our work, we are interested on missions realized under duration, safety and energy performance constraints, in a known but dynamic environment.Applying the different constraints decomposes the mission into a sequence of activities realized under invariant constraints.Each one, can be realized by a set of robotic tasks (move, be located, analyze an image, etc.).These tasks can be implemented in various ways according to the different possibles actuators, sensors and algorithms configurations.The adressed problem is the following: how to choose the hardware and software resources to use along a mission while satisfying the different performance constraints ? It is a multicriteria knapsack problem known to be NP-hard, where the complexity becomes very quickly unexplorable.To propose and guarantee an applicable solution under real-time constraints, we used an algorithm allowing to find a set of good solutions in few iterations.The proposed resources management approach is implemented on a Pioneer-3DX robot using a control architecture based on the Middleware ContrACT.This approach has been validated on a patrolling mission travelling 200 m within the LIRMM laboratory during about 10 mn, to verify the state of valves.For the considered mission, the state space dimension is higher than 10^{14}.The hardware and software resources are dynamically and autonomously selected along the mission to satisfy the different performance constraints.If a resource becomes faulty and/or many obstacle avoidances occure and lead to performance drift, the developed approach finds on line a new resources allocation solution (if it exists).So this approach allows to enhance the fault tolerance of the robotic system.
208

Motion discontinuity-robust controller for steerable wheeled mobile robots / Contrôle de la discontinuité de mouvement - contrôleur robuste pour robots mobiles roulants

Sorour, Mohamed 06 November 2017 (has links)
Les robots mobiles à roues orientables gagnent de la mobilité en employant des roues conventionnelles entièrement orientables, comportant deux joints actifs, un pour la direction et un autre pour la conduite. En dépit d'avoir seulement un degré de mobilité (DOM) (défini ici comme degrés de liberté instantanément autorisés DOF), correspondant à la rotation autour du centre de rotation instantané (ICR), ces robots peuvent effectuer des trajectoires planaires complexes de $ 2D $. Ils sont moins chers et ont une capacité de charge plus élevée que les roues non conventionnelles (par exemple, Sweedish ou Omni-directional) et, en tant que telles, préférées aux applications industrielles. Cependant, ce type de structure de robot mobile présente des problèmes de contrôle textit {basic} difficiles de la coordination de la direction pour éviter les combats d'actionneur, en évitant les singularités cinématiques (ICR à l'axe de la direction) et les singularités de représentation (du modèle mathématique). En plus de résoudre les problèmes de contrôle textit {basic}, cette thèse attire également l'attention et présente des solutions aux problèmes de textit {niveau d'application}. Plus précisément, nous traitons deux problèmes: la première est la nécessité de reconfigurer "de manière discontinue" les articulations de direction, une fois que la discontinuité dans la trajectoire du robot se produit. Une telle situation - la discontinuité dans le mouvement du robot - est plus susceptible de se produire de nos jours, dans le domaine émergent de la collaboration homme-robot. Les robots mobiles qui fonctionnent à proximité des travailleurs humains en mouvement rapide rencontrent généralement une discontinuité dans la trajectoire calculée en ligne. Le second apparaît dans les applications nécessitant que l'angle de l'angle soit maintenu, certains objets ou fonctionnalités restent dans le champ de vision (p. Ex., Pour les tâches basées sur la vision) ou les changements de traduction. Ensuite, le point ICR est nécessaire pour déplacer de longues distances d'un extrême de l'espace de travail à l'autre, généralement en passant par le centre géométrique du robot, où la vitesse du robot est limitée. Dans ces scénarios d'application, les contrôleurs basés sur l'ICR à l'état de l'art conduiront à des comportements / résultats insatisfaisants. Dans cette thèse, nous résolvons les problèmes de niveau d'application susmentionnés; à savoir la discontinuité dans les commandes de vitesse du robot et une planification meilleure / efficace pour le contrôle du mouvement du point ICR tout en respectant les limites maximales de performance des articulations de direction et en évitant les singularités cinématiques et représentatives. Nos résultats ont été validés expérimentalement sur une base mobile industrielle. / Steerable wheeled mobile robots gain mobility by employing fully steerable conventional wheels, having two active joints, one for steering, and another for driving. Despite having only one degree of mobility (DOM) (defined here as the instantaneously accessible degrees of freedom DOF), corresponding to the rotation about the instantaneous center of rotation (ICR), such robots can perform complex $2D$ planar trajectories. They are cheaper and have higher load carrying capacity than non-conventional wheels (e.g., Sweedish or Omni-directional), and as such preferred for industrial applications. However, this type of mobile robot structure presents challenging textit{basic} control issues of steering coordination to avoid actuator fighting, avoiding kinematic (ICR at the steering joint axis) and representation (from the mathematical model) singularities. In addition to solving the textit{basic} control problems, this thesis also focuses attention and presents solutions to textit{application level} problems. Specifically we deal with two problems: the first is the necessity to "discontinuously" reconfigure the steer joints, once discontinuity in the robot trajectory occurs. Such situation - discontinuity in robot motion - is more likely to happen nowadays, in the emerging field of human-robot collaboration. Mobile robots working in the vicinity of fast moving human workers, will usually encounter discontinuity in the online computed trajectory. The second appears in applications requiring that some heading angle is to be maintained, some object or feature stays in the field of view (e.g., for vision-based tasks), or the translation verse changes. Then, the ICR point is required to move long distances from one extreme of the workspace to the other, usually passing by the robot geometric center, where the feasible robot velocity is limited. In these application scenarios, the state-of-art ICR based controllers will lead to unsatisfactory behavior/results. In this thesis, we solve the aforementioned application level problems; namely discontinuity in robot velocity commands, and better/efficient planning for ICR point motion control while respecting the maximum steer joint performance limits, and avoiding kinematic and representational singularities. Our findings has been validated experimentally on an industrial mobile base.
209

A robotic control framework for quantitative ultrasound elastography / Un cadre général de contrôle robotique pour l’élastographie ultrasonore quantitative

Patlan-Rosales, Pedro Alfonso 26 January 2018 (has links)
Cette thèse concerne le développement d'un cadre de contrôle robotique pour l'élastographie ultrasonore quantitative. L'élastographie ultrasonore est une technique qui dévoile les paramètres élastiques du tissu qui sont généralement liés à une pathologie. Cette thèse propose trois nouvelles approches robotiques différentes pour pour assister la procédure d'élastographie. La première approche concerne le contrôle d'un robot actionnant une sonde à ultrasons pour effectuer un mouvement de palpation nécessaire pour l'élastographie par ultrasons. L'élasticité du tissu est utilisée pour concevoir une loi d'asservissement afin de maintenir un tissu d'intérêt rigide dans le champ de vision de la sonde ultrasonore. De plus, l'orientation de la sonde est contrôlée par un utilisateur humain pour explorer différentes vues du tissu pendant que l'élastographie est effectuée. La seconde approche exploite le recalage d'images déformables avec des images ultrasonores pour estimer l'élasticité tissulaire et aider à la compensation automatique par asservissement visuel ultrasonore d'un mouvement introduit dans le tissu. La troisième approche offre une méthodologie pour ressentir l'élasticité du tissu en déplaçant une sonde virtuelle dans l'image ultrasonore avec un dispositif haptique pendant que le robot effectue un mouvement de palpation. Les résultats expérimentaux des trois approches robotiques obtenus sur des fantômes constitués de tissus démontrent l'efficacité des méthodes proposées et ouvre des perspectives intéressantes pour l'élastographie ultrasonore assistée par robot. / This thesis concerns the development of a robotic control framework for quantitative ultrasound elastography. Ultrasound elastography is a technology that unveils elastic parameters of a tissue, which are commonly related with certain pathologies. This thesis proposes three novel robotic approaches to assist examiners with elastography. The first approach deals with the control of a robot actuating an ultrasound probe to perform palpation motion required for ultrasound elastography. The elasticity of the tissue is used to design a servo control law to keep a stiff tissue of interest in the field of view of the ultrasound probe. Additionally, the orientation of the probe is controlled by a human user to explore other tissue while elastography is performed. The second approach exploits deformable image registration of ultrasound images to estimate the tissue elasticity and to help in the automatic compensation by ultrasound visual servoing of a motion introduced into the tissue. The third approach offers a methodology to feel the elasticity of the tissue by moving a virtual probe in the ultrasound image with a haptic device while the robot is performing palpation motion. Experimental results of the three robotic approaches over phantoms with tissue-like offer an excellent perspective for robotic-assistance for ultrasound elastography.
210

Self Exploration of Sensorimotor Spaces in Robots. / L’auto-exploration des espaces sensorimoteurs chez les robots

Benureau, Fabien 18 May 2015 (has links)
La robotique développementale a entrepris, au courant des quinze dernières années,d’étudier les processus développementaux, similaires à ceux des systèmes biologiques,chez les robots. Le but est de créer des robots qui ont une enfance—qui rampent avant d’essayer de courir, qui jouent avant de travailler—et qui basent leurs décisions sur l’expérience de toute une vie, incarnés dans le monde réel.Dans ce contexte, cette thèse étudie l’exploration sensorimotrice—la découverte pour un robot de son propre corps et de son environnement proche—pendant les premiers stage du développement, lorsque qu’aucune expérience préalable du monde n’est disponible. Plus spécifiquement, cette thèse se penche sur comment générer une diversité d’effets dans un environnement inconnu. Cette approche se distingue par son absence de fonction de récompense ou de fitness définie par un expert, la rendant particulièrement apte à être intégrée sur des robots auto-suffisants.Dans une première partie, l’approche est motivée et le problème de l’exploration est formalisé, avec la définition de mesures quantitatives pour évaluer le comportement des algorithmes et d’un cadre architectural pour la création de ces derniers. Via l’examen détaillé de l’exemple d’un bras robot à multiple degrés de liberté, la thèse explore quelques unes des problématiques fondamentales que l’exploration sensorimotrice pose, comme la haute dimensionnalité et la redondance sensorimotrice. Cela est fait en particulier via la comparaison entre deux stratégies d’exploration: le babillage moteur et le babillage dirigé par les objectifs. Plusieurs algorithmes sont proposés tour à tour et leur comportement est évalué empiriquement, étudiant les interactions qui naissent avec les contraintes développementales, les démonstrations externes et les synergies motrices. De plus, parce que même des algorithmes efficaces peuvent se révéler terriblement inefficaces lorsque leurs capacités d’apprentissage ne sont pas adaptés aux caractéristiques de leur environnement, une architecture est proposée qui peut dynamiquement choisir la stratégie d’exploration la plus adaptée parmi un ensemble de stratégies. Mais même avec de bons algorithmes, l’exploration sensorimotrice reste une entreprise coûteuse—un problème important, étant donné que les robots font face à des contraintes fortes sur la quantité de données qu’ils peuvent extraire de leur environnement;chaque observation prenant un temps non-négligeable à récupérer. [...] À travers cette thèse, les contributions les plus importantes sont les descriptions algorithmiques et les résultats expérimentaux. De manière à permettre la reproduction et la réexamination sans contrainte de tous les résultats, l’ensemble du code est mis à disposition. L’exploration sensorimotrice est un mécanisme fondamental du développement des systèmes biologiques. La séparer délibérément des mécanismes d’apprentissage et l’étudier pour elle-même dans cette thèse permet d’éclairer des problèmes importants que les robots se développant seuls seront amenés à affronter. / Developmental robotics has begun in the last fifteen years to study robots that havea childhood—crawling before trying to run, playing before being useful—and that are basing their decisions upon a lifelong and embodied experience of the real-world. In this context, this thesis studies sensorimotor exploration—the discovery of a robot’s own body and proximal environment—during the early developmental stages, when no prior experience of the world is available. Specifically, we investigate how to generate a diversity of effects in an unknown environment. This approach distinguishes itself by its lack of user-defined reward or fitness function, making it especially suited for integration in self-sufficient platforms. In a first part, we motivate our approach, formalize the exploration problem, define quantitative measures to assess performance, and propose an architectural framework to devise algorithms. through the extensive examination of a multi-joint arm example, we explore some of the fundamental challenges that sensorimotor exploration faces, such as high-dimensionality and sensorimotor redundancy, in particular through a comparison between motor and goal babbling exploration strategies. We propose several algorithms and empirically study their behaviour, investigating the interactions with developmental constraints, external demonstrations and biologicallyinspired motor synergies. Furthermore, because even efficient algorithms can provide disastrous performance when their learning abilities do not align with the environment’s characteristics, we propose an architecture that can dynamically discriminate among a set of exploration strategies. Even with good algorithms, sensorimotor exploration is still an expensive proposition— a problem since robots inherently face constraints on the amount of data they are able to gather; each observation takes a non-negligible time to collect. [...] Throughout this thesis, our core contributions are algorithms description and empirical results. In order to allow unrestricted examination and reproduction of all our results, the entire code is made available. Sensorimotor exploration is a fundamental developmental mechanism of biological systems. By decoupling it from learning and studying it in its own right in this thesis, we engage in an approach that casts light on important problems facing robots developing on their own.

Page generated in 0.0406 seconds