Spelling suggestions: "subject:"cobots collaboratif."" "subject:"cobots collaboration.""
1 |
Analyse, conception et contrôle de robots collaboratifsLanduré, Jérôme 02 February 2024 (has links)
Le projet derrière cette thèse porte sur l’amélioration des conditions de travail des ouvriers sur les chaînes d’assemblage. Une équipe de Général Motors est venue à notre rencontre avec la problématique que les ouvriers sur leurs chaînes d’assemblage doivent souvent adopter des postures inconfortables lors de l’exécution de certaines tâches. Répétées de nombreuses fois, ces postures peuvent engendrer des problèmes de santé sur le long terme. Une solution proposée pour pallier à ce problème est de permettre à l’ouvrier d’effectuer son travail depuis une zone éloignée de la zone d’assemblage, où il ne devrait pas adopter de postures gênantes et pourrait être isolé de bruits, chaleurs ou dangers induits par la proximité avec la chaîne d’assemblage. Pour faire le lien entre cette zone sécuritaire et la zone de travail, la solution d’un robot a été proposée. Cette thèse présente le travail effectué pour concevoir ce robot. Cette thèse est composée de quatre chapitres qui sont autant d’articles abordant chacun un sujet différent. Le chapitre 1 porte sur deux types d’assemblages courant, en fait l’analyse et propose des solutions pour mécaniser ces tâches. Un outil est conçu et testé dans le cas des clips aussi appelés ’snap-fit’. Des stratégies de trajectoire et l’usage de mécanismes vibrants sont explorés pour l’insertion de tuyaux. Les phases de test et de mesure sont présentées en vidéo. Dans le chapitre 2, la notion de difficulté d’accomplir une tache de loin est abordée. En effet, la distance augmente considérablement la concentration et la perception nécessaires à un opérateur humain pour accomplir une tâche d’assemblage, résultant en un échec ou au moins un temps d’exécution plus grand et donc une efficacité moindre. Les mécanismes de correction de précision sont donc abordés. Des solutions impliquant l’usage de ressorts sont tout d’abord présentées pour permettre aux mécanismes d’être compliants tout en maintenant une position neutre définie. Ces solutions ont pour particularité d’introduire des seuils de force pour activer la compliance qui garantissent un comportement du mécanisme prévisible dans une utilisation générale. Puis, la notion de correction de position est introduite au travers de la famille de mécanismes des Remote Centre of Compliance (RCC) que l’on peut traduire par centre de mobilité distant. Différentes architectures en rotation et en translation sont présentées pour proposer des alternatives au RCC plus adaptées au contexte de travail avec un opérateur humain. Des tests sont effectués et une vidéo appuie la démonstration. Après la conception des mécanismes passifs, le plan du projet était de se tourner vers des solutions actives. La recherche d’une architecture adaptée aux besoins a mené à l’élaboration du chapitre 3. Ce dernier présente une architecture de robot parallèle à six degrés de liberté de type 6-ꝐUS. La cinématique du robot est étudiée, puis une méthode analytique de détermination de son espace de travail géométrique est présentée. Une étude de ses lieux de singularité et de ses capacités en force complète son analyse. Même si cette architecture ne fut pas celle retenue pour le prototype, les méthodes développées pour cette architecture furent utilisées pour la conception du robot fabriqué. Après de multiples itérations, une architecture pour le robot actif fut choisie. Cette dernière est présentée au chapitre 4 et s’accompagne de la présentation de trois schémas de contrôle développés pour répondre à la problématique. Les étapes de conception développées dans le chapitre 3 sont présentées au préalable. Le premier schéma de contrôle exploré est un contrôle en position, qui sert de base au contrôle du robot et permet de développer et valider les outils essentiels au bon contrôle du robot. Le second schéma de contrôle introduit des concepts présentés dans les architectures passives précédentes, en présentant l’avantage d’être reconfigurable au besoin. Un modèle simulant le comportement d’un RCC est d’ailleurs présenté. Le dernier schéma de contrôle exploré introduit de la vision numérique. Un marqueur ARUCO est placé sur le robot et les informations qu’il fournit sont incluses et traitées dans le schéma de contrôle. L’objectif est de simuler un environnement où le robot peut détecter de façon efficace et indépendante les positions des pièces à assembler et ajuster en temps réel les erreurs de positionnement de l’opérateur humain. / The project behind this thesis is about improving the working conditions of workers on assembly lines. A research team from General Motors came to us with a problem to work on: the workers on their assembly lines must use body postures that are difficult to bear when performing some tasks. These postures can become health hazards because of the repetitive nature of their work. The proposed solution to this problem is to make the operator work in a safe remote area from the assembly area, where he can keep a comfortable posture and remain far from the potential hazards of the assembly line. To make the link between the safe area and the assembly area, the solution of using a robot has been suggested. This thesis presents the work accomplished to design such robot. This thesis is composed of four chapters, each corresponding to an article dealing with a different subject. Chapter 1 deals with two different types of assembly tasks, presents their analysis and discusses solutions to introduce mechanisms in their process. A tool is designed and tested to perform snap-fit assembly tasks. Motion strategies are explored as well as vibrating mechanisms to deal with hose assembly tasks. Test phases and data measurements are presented in a video. In chapter 2, the issues associated with performing a task remotely are raised. Indeed, distance enhances greatly the required concentration and perception for a human operator to perform the task, resulting in a failure or a greater operating time, reducing productivity. Therefore, the accuracy correction mechanisms were considered. First, solutions with springs are presented to design compliant mechanisms that return to a neutral configuration when unloaded. These solutions bring the originality to introduce force thresholds to keep the compliance passive when not needed. Then, accuracy correction mechanisms are introduced through RCC mechanisms. Several rotational and translational mechanisms adapted to human collaboration are presented. Tests to validate the concept are shown in a video. After the design of passive mechanisms, the scope of the project turned to active solutions. The search for an effective architecture led to the contents of chapter 3. It presents a sixdegree-of-freedom 6-ꝐUS parallel robot. The kinematic analysis of the robot is presented, followed by an algorithm to determine the geometrical workspace of the robot. A singularity locus analysis and a force capability analysis are then presented. Even if this architecture was not selected in the end, the methods developed were used for the design of the final architecture. After several iterations, an architecture was chosen for the active robot. This architecture is presented in chapter 4. After a design process based on the work shown in chapter 3, three control schemes are presented. The first one is a classical position control which is a requisite for more advanced schemes. The second control scheme introduces concepts previously raised with the passive mechanisms discussed in chapter 2. The model simulates a RCC mechanism with the advantage of being reconfigurable without hardware modifications. The last control scheme introduces computer vision. An ARUCO marker is placed on the robot and the information it provides are injected in the control scheme. The objective is to simulate an environment where the robot detects the pose of the parts to assemble and adjusts itself in real time to compensate for the errors of the human operator.
|
2 |
Conceptual design, kinematic analysis and trajectory planning of wrist-gripper mechanisms for a parallel redundant collaborative robotGhaedrahmati, Ramin 05 August 2024 (has links)
Cette thèse présente un robot hybride parallèle spatial combiné avec (6+3) degrés de liberté, composé d'un robot de base fondamental et d'un ensemble poignet-pince intégré à 3 degrés de liberté (3-DOF). L'objectif principal del'intégration du mécanisme poignet-pince à 3 degrés de liberté est d'utiliser les degrés de liberté redondants du robot de base, étendant ainsi son espace de rotation. De plus, l'inclusion d'une pince améliore les capacités de manipulation du robot, en faisant un système polyvalent et puissant adapté à diverses applications. Pour atteindre cet objectif, le Chapitre 1 présente un poignet parallèle surcontraint à 2 degrés de liberté, mettant en avant la rigidité, la vitesse et un design léger et compact. Des solutions analytiques pour les cinématiques inverse et directe, dérivées géométriquement, facilitent l'analyse desingularité, révélant une plage de mouvement significative exempte de singularité. Les résultats de simulation dans MSC Adams valident la précision des modèles, soulignant la couverture spatiale supérieure et la masse plus légère du poignet proposé par rapport à un mécanisme comparable. De plus, une analyse d'interférence de contact est effectuée dans un logiciel CAO, et l'espace de travail pratique du mécanisme proposé est comparé à celui de l'Omni-Wrist III de dimensions similaires. Le Chapitre 2 présente un robot parallèle spatial à pince poignet à 3 degrés de liberté conçu pour la manipulation de précision dans des environnements industriels. La conception compacte du mécanisme comprend un poignet à deux rotations sphériques pures (ESPR) à torsion nulle à 2 degrés de liberté et une pince à 1 degré de liberté. Le robot démontre une grande plage de mouvement exempte de singularité grâce à des paramètres soigneusement conçus. Les résultats desimulation valident la précision des modèles cinématiques inverse et directe, avec de petites erreurs quadratiques moyennes. Ce robot, capable d'une large gamme d'orientations et de manipulation précise, offre des applications potentielles dans des contextes industriels exigeant une haute précision et une grande exactitude. Dans le Chapitre 3, un robot hybride parallèle kinématiquement redondant avec (6+3) degrés de liberté est présenté. En s'appuyant sur l'ensemble poignet-pince introduit dans le Chapitre 2, une version modifiée est intégrée à un robot hybride parallèle de base avec (6+3) degrés de liberté pour améliorer l'espace de rotation et les capacités de préhension. Le vaste mouvement exempt de singularité du poignet à 2 degrés de liberté permet une manipulation fluide et précise des objets dans diverses orientations, applicable à des tâches diverses telles que l'assemblage, la prise et le placement, et l'inspection. Des solutions analytiques pour la cinématique inverse du robot sont dérivées à l'aide d'une méthode géométrique, avec une validation réalisée via MSC Adams. Un schéma de contrôle de position PD simple est suggéré pour le contrôle du robot. Ensuite, un prototype physique est construit, et la validation expérimentale met en évidence l'efficacité du contrôleur proposé. En conclusion, le robot hybride parallèle (6+3) degrés de liberté proposé dans cette étude présente un potentiel significatif pour améliorer l'efficacité et l'adaptabilité des manipulateurs robotiques dans un large éventail d'applications industrielles et de recherche. / This thesis introduces a combined spatial hybrid parallel robot with (6+3) degrees of freedom, comprising a foundational base robot and an integrated 3-degree-of-freedom (3-DOF) wrist-gripper assembly. The primary aim of incorporating the 3-DOF wrist-gripper mechanism is to use the redundant degrees of freedom in the base robot, there by extending its rotational workspace. Additionally, the inclusion of a gripper enhances the robot's manipulation capabilities, making it a versatile and powerful system suitable for various applications. To achieve this objective, Chapter 1 presents a dexterous overconstrained 2-DOF parallel wrist, showcasing stiness, speed, and a compact lightweight design. Closed-form solutions for inverse and forward kinematics, derived geometrically, facilitate singularity analysis, revealing a signicant singularity-free range of motion. Simulation results in MSC Adams validate the accuracy of the models, emphasizing the proposed wrist's superior workspace coverage and lighter mass compared to a comparable mechanism. Furthermore, a contact interference analysis is performed in a CAD software, and the practical workspace of the proposed mechanism is compared to that of the Omni-Wrist III with similar dimensions. Chapter 2 introduces a spatial 3-DOF wrist-gripper parallel robot designed for precision manipulation in industrial settings. The compact design of the mechanism includes a zero-torsion 2-DOF equal spherical pure rotations (ESPRs) wrist and a 1-DOF gripper. The robot demonstrates a large singularity-free range of motion through carefully designed parameters. Simulation results validate the accuracy of both inverse and forward kinematics models, with small root mean square errors. This robot, capable of a wide range of orientations and precise manipulation, holds potential applications in industrial contexts requiring high precision and accuracy. In Chapter 3, a (6+3)-DOF kinematically redundant hybrid parallel robot is presented. Building upon the wrist-gripper assembly introduced in Chapter 2, a modied version is integrated into a base (6+3)-DOF hybrid parallel robot to enhance rotational workspace and grasping capabilities. The extensive singularity-free motion of the 2-DOF wrist enables seamless and accurate manipulation of objects in various orientations, applicable to diverse tasks such as assembly, pick-and-place, and inspection. Analytical solutions for the robot's inverse kinematics are derived using a geometric method, with validation conducted through MSC Adams. A simple PD position control scheme is suggested for robot control. Subsequently, a physical prototype is constructed, and experimental validation showcases the e cacy of the proposed controller. In conclusion, the (6+3)-DOF hybrid parallel robot proposed in this study exhibits signicant potential for improving the e ciency and adaptability of robotic manipulators across a broad spectrum of industrial and research applications.
|
3 |
Conception et prototypage d'un robot collaboratif parallèle SCARA redondant rétroentraînable à faible impédance mécanique avec rotation illimitée à l'effecteur et préhenseur actionné par la baseLapierre, Mario Philip 25 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles / Ce mémoire présente les travaux de recherche menés afin de concevoir un robot parallèle collaboratif rétroentraînable à faible impédance mécanique. L'hypothèse est qu'en utilisant des moteurs sans réducteur à la sortie et qu'en réduisant la masse et l'inertie des pièces en mouvement du robot, une rétrocommandabilité intuitive est obtenue. Le prototype physique permet de valider l'hypothèse en faisant l'objet de tests expérimentaux. Les travaux présentés dans ce mémoire abordent également l'exploitation de la redondance du robot afin d'opérer une pince à son effecteur. L'architecture parallèle SPARA utilisée est bonifiée d'un préhenseur à prise parallèle qui permet de conserver sa rotation illimitée à l'effecteur. La méthodologie des simulations qui permettent l'optimisation et la validation du prototype est présentée. L'optimisation de l'architecture du robot ainsi que de sa pince est expliquée en détail. La conception mécanique du robot est ensuite présenté ainsi que le montage du prototype, suivi des validations expérimentales menées sur le robot. / This Master's thesis presents the research work carried out in order to design a parallel backdrivable collaborative robot with low mechanical impedance. The assumption is that using direct drive motors and by reducing the mass and the inertia of the moving parts of the robot, intuitive backdrivability is achieved. The physical prototype confirms the hypothesis through experimental testing. The work presented in this thesis also addresses the exploitation of the robot's redundancy in order to operate a gripper at its end-effector. The SPARA parallel architecture used is enhanced with a gripper with parallel grasping which allows the end-effector to retain its unlimited rotation. The simulation methodology that allows the optimization and validation of the prototype is presented. The optimization of the architecture of the robot and its gripper is explained in detail. The mechanical design of the robot is then presented as well as the assembly of the prototype, followed by the experimental validations carried out on the robot.
|
4 |
Geometric synthesis of force and torque limiting modules for serial robot safetyZhang, Meiying 13 October 2023 (has links)
Titre de l'écran-titre (visionné le 10 octobre 2023) / L'interaction physique humain-robot constitue un mode d'opération prometteur pour plusieurs applications où la force et l'endurance des robots peut être combinée aux capacités d'adaptation et de jugement des humains. Toutefois, l'interaction physique humain-robot soulève des questions au niveau de la sécurité. Les standards généralement acceptés dans le domaine de la robotique prescrivent un seuil de force statique maximale de 150 N et une puissance maximale de 80 W afin de considérer une situation donnée comme étant sécuritaire. Cette thèse propose la synthèse de mécanismes robotiques sériels qui soient intrinsèquement sécuritaires pour l'interaction physique humain-robot. Le concept proposé consiste à inclure un ensemble de limiteurs de forces ou de couples passifs avec des seuils constants dans la structure même du robot afin de limiter les efforts possibles à l'effecteur. Lorsque la force ou le couple appliqué à l'un des limiteurs dépasse la valeur seuil prescrite, celui-ci est déclenché, entraînant ainsi un mouvement qui vise à protéger les humains contre les forces excessives. Il est bien connu que la relation entre les efforts articulaires et les efforts à l'effecteur d'un robot varie en fonction de la configuration. Afin de pallier cet effet, il est proposé d'inclure un nombre de limiteurs supérieur au nombre d'articulations actionnées. Ainsi, la synthèse de modules de limiteurs de forces isotropes est présentée afin d'obtenir des forces transmises suffisantes tout en assurant la sécurité. Plusieurs modules de limiteurs de forces isotropes plans sont proposés et utilisés pour analyser les caractéristiques de robots sériels à deux degrés de liberté. En plus de modéliser les forces de contact à l'effecteur, les forces de contact le long des membrures ainsi que la puissance de collisions potentielles sont analysées. Des exemples de manipulateurs sériels et leur analyse statique sont présentés. Ensuite, le concept d'espace de force isotrope est généralisé afin d'inclure les modules tridimensionnels. Des architectures possibles de modules isotropes spatiaux sont proposés et les conditions requises pour assurer l'isotropie des efforts à l'effecteur sont obtenues. Des manipulateurs sériels spatiaux à trois degrés de liberté incluant un module isotrope sont proposés afin de démontrer l'efficacité du concept. Les forces maximales possibles le long des membrures sont aussi étudiées. Des limiteurs de forces et de couples sont montées sur la structure du robot afin de s'assurer que les forces de contact sont limitées en tout point du robot. Une analyse de la puissance est également présentée. Finalement, la mise en œuvre pratique de l'approche proposée dans la thèse est considérée. Deux types de limiteurs de forces ou couples sont proposés. Leur design est compact et permet de produire une limitation bi-directionnelle des efforts en utilisant un ressort unique. Le premier type de limiteur ne retourne pas à sa configuration initiale lorsque les efforts externes sont retirés puisque la résistance aux efforts externes diminue drastiquement lorsque le seuil d'activation est dépassé. À l'opposé, le second type de limiteur retourne automatiquement à sa configuration initiale lorsque les efforts externes sont retirés. Il est démontré que les architectures de limiteurs proposées peuvent être intégrées au design de membrures de robots grâce à leur simplicité et leur compacité. Des prototypes de modules isotropes sont alors construits et testés expérimentalement afin de démontrer leur possible utilisation pratique. / Physical human-robot interaction is a desirable paradigm for many applications where the strength and endurance of robots can be combined with the adaptability and judgement of human beings. However, physical interaction between humans and robots leads to safety concerns. Robotics standards state that, as a sufficient condition for allowing human-robot collaboration, the static force and the dynamic power at the tool centre point must not exceed 150 (N) and 80 (W), respectively. This dissertation proposes a synthesis approach to build intrinsically safe serial robotic mechanisms for applications in human-robot cooperation. In this concept, a number of passive torque and force limiters with constant force thresholds are included in the structure of a serial manipulator in order to limit the feasible forces at the tool centre point of the end-effector. Once the torque/force at any one of the limiters exceeds the prescribed maximum threshold, the corresponding clutch is triggered, thus protecting humans from injury. It is well known that the relationship between the joint torques/forces and the achievable end-effector forces is configuration dependent. In order to alleviate this effect, i.e., the variation of the joint to Cartesian force mapping, it is proposed to include more clutches than actuated joints. Hence, the design of isotropic force modules is addressed to produce proper force capabilities while ensuring safety. Several planar isotropic force modules are first proposed and used to analyze the force capabilities of two-degree-of-freedom planar serial robots. In addition to modelling the contact forces at the end-effector, the forces that can be applied by the robot to its environment when contact is taking place elsewhere along its links are also analyzed as well as the power of potential collisions. Examples of planar serial manipulator architectures and their static analysis are given. Then, the concept of isotropic force space is extended from planar modules to spatial modules. Possible architectures of spatial isotropic modules are proposed and the conditions required to ensure isotropy of the forces at the end-effector are derived. Three-degree-of-freedom spatial manipulators including a proposed spatial isotropic module are designed to demonstrate the effectiveness of the concept, and the maximum contact forces along the links are then studied. Force and torque limiter are distributed along the structure of the manipulator in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is also presented in order to support the results obtained. Finally, the implementation of the proposed approach in a real application is addressed. Two types of passive clutch mechanisms are designed. Both are compact and produce a bi-directional limiting behaviour using a single extension spring. One is referred to as the no-return limiter. The mechanism does not return to its original configuration even if the external load is removed since its resisting torque drops rapidly once the limiter is triggered. The other one is the elastic return limiter, which can bring the robot links to their original positions after an applied excessive force is removed. The proposed architectures can be integrated in the design of robotic links since they are simple and compact. Then, some prototypes equipped with force and torque limiters are built and tested experimentally to illustrate a possible practical implementation of the concept.
|
5 |
Développement mécanique d'un bras robotisé d'assistance pour assister les personnes vivant avec des incapacités aux membres supérieursDoyon, Charles 12 November 2023 (has links)
Titre de l'écran-titre (visionné le 8 mai 2023) / Plusieurs personnes sont atteintes par une certaine forme d'incapacité au quotidien. Au Canada, 13.7% de la population est limitée au quotidien par une incapacité [1], tandis que ce nombre est de 20% aux États-Unis [2]. Une solution pour augmenter leur autonomie est l'utilisation de technologies d'assistance. Plus spécifiquement, les bras d'assistance robotisés permettent d'aider au quotidien les personnes vivant avec des incapacités aux membres supérieurs [3; 4]. Ces robots permettent de réaliser certaines tâches de la vie quotidienne comme de déplacer des objets, de manger, de boire, d'ouvrir ou de fermer des portes. Bien qu'ils soient utiles, ces bras d'assistance sont difficiles d'accès à cause de leur coût élevé [3; 5]. Ce mémoire présente la conception mécanique d'un bras robotisé d'assistance et d'une main robotisée pour assister les personnes ayant des incapacités aux membres supérieurs en fauteuil roulant. Le concept présenté se démarque des autres solutions disponibles sur le marché puisqu'elle est abordable, environ 5000 $. Le concept est donc plus facilement accessible par la population visée. Le bras d'assistance robotisé peut se fixer sur le côté d'un fauteuil roulant ou sur le coin d'une table. Le bras possède six degrés de liberté. Le bras peut déplacer son effecteur à la bouche de l'utilisateur pour manger ou atteindre le sol pour y prendre un objet. Le bras est en mesure d'atteindre n'importe quelle orientation grâce à un poignet sphérique à son extrémité. Une main robotisée est développée pour être fixée à l'extrémité du bras robotisé. La main robotisée possède deux doigts à deux phalanges sous-actionnés par un seul moteur. La main est en mesure de réaliser des prises parallèles et des prises englobantes. La transition entre ces deux prises est entièrement passive et possible grâce à un mécanisme constitué de barres et de ressorts dans chaque doigt. / Many people are affected by some form of disability on a daily basis. In Canada, 13.7% of the population is limited on a daily basis by a disability [1], while this number is 20% in the United States [2]. A solution to increase their autonomy is the use of assistive technologies. More specifically, assistive robotic arms provide daily assistance to people living with upper body disabilities [3; 4]. These robots make it possible to perform certain tasks of daily life such as moving objects, eating, drinking, opening or closing doors. Although use ful, these assistive robotic arms are difficult to access because of their high cost [3; 5]. This thesis presents the mechanical design of an assistive robotic arm and a robotic hand to assist people with upper limb disabilities in wheelchairs. The concept presented stands out from other solutions available on the market since it is affordable, around 5000 $. The concept is therefore more easily accessible by the target population. The robotic arm can be attached to the side of a wheelchair or the corner of a table. The arm has six degrees of freedom. The arm can bring its effector to the mouth of the user to eat or reach the ground to pick up an object. The arm is able to orient the effector in any orientation thanks to a spherical wrist at its end. A robotic hand has been developed to be attached to the end of the robotic arm. The robotic hand has two fingers with two phalanges under actuated by a single motor. The hand is able to perform parallel en compassing grasps. The transition between these two grasps is entirely passive and possible thanks to a mechanism made up of bars and springs in each finger.
|
6 |
Étude et conception de systèmes de validation de tâches d'assemblage : participation à la conception d'un robot collaboratif destiné à une chaîne de montage automobileThuriet, Jean 07 May 2019 (has links)
La robotique collaborative connaît ces dernières années une forte croissance, grâce à la pertinence de la collaboration entre les humains et les robots dans un même espace de travail. Des applications industrielles se développent, aussi bien dans les grandes multinationales que dans les PME. Dans le contexte d’une chaîne d’assemblage automobile, de nombreuses problématiques se posent pour permettre la collaboration efficace entre robot et opérateur. Un robot collaboratif conçu dans ce cadre est destiné à effectuer des tâches d’assemblages dans des zones à l’accessibilité complexe. Étant à distance, l’opérateur n’aura pas nécessairement de visuel direct sur l’accomplissement de la tâche, et pour éviter des pertes de temps, il est souhaitable que le robot soit capable de vérifier et de valider automatiquement son bon accomplissement. En découle la problématique à l’étude dans ce mémoire, qui est la vérification automatique du bon accomplissement des tâches d’assemblage effectuées par le robot. Afin d’y répondre, une pré-étude est effectuée, visant à déterminer les possibilités en termes de capteurs et d’algorithmes de détection, et permettant de répondre aux besoins et contraintes de General Motors, commanditaire de cette étude. Chaque chapitre du mémoire présente donc un système de détection, composé d’un capteur et d’un ou plusieurs algorithmes de décision. Les différences en termes de traitement du signal et d’algorithme sont présentées et comparées, en s’appuyant sur des expérimentations. Parmi les types d’assemblages sélectionnés par General Motors, ceux utilisés pour la conception et l’expérimentation des solutions sont les assemblages clipsés (« snap fit ») et les assemblages de connecteurs électriques. Le premier chapitre présente une solution fondée sur l’utilisation de photodétecteurs, secondée par un algorithme vérifiant en temps réel les valeurs renvoyées par le photodétecteur. Lorsque cette valeur descend sous une valeur seuil préétablie, l’algorithme déduit que l’assemblage a été correctement effectué. Cette méthode est simple et robuste, ayant obtenu un taux de détection correcte de la situation d’assemblage de 100% lors des phases de tests. Cependant cette robustesse est contrebalancée par le caractère relativement spécifique de la solution et son peu de flexibilité pour l’adaptation à d’autres assemblages. Le second chapitre porte sur un système employant un accéléromètre destiné à enregistrer les différents mouvements survenant lors de l’assemblage. Suit une méthode de traitement du signal obtenu, permettant de caractériser et de différencier les signaux émanant d’assemblages réussis de ceux provenant d’assemblages ratés grâce à des paramètres statistiques. Ces derniers sont finalement récupérés par deux algorithmes de reconnaissance différents, qui sont ensuite comparés. Le premier algorithme consiste à vérifier la correspondance des paramètres statistiques d’un signal avec des valeurs seuil fixées à l’avance. L’autre méthode, issue de l’apprentissage automatique, utilise les Séparateurs à Vaste Marge pour distinguer deux classes : les assemblages réussis et les assemblages ratés. Après expérimentation, il ressort que ces deux méthodes ont des performances assez similaires , de l’ordre de 90%. Ainsi ce sera le contexte et la complexité du signal à étudier qui présideront au choix d’une méthode. Enfin, le dernier chapitre se penche sur l’emploi d’un microphone et de techniques de reconnaissance sonore pour permettre la bonne identification d’un assemblage de connecteurs électriques. Deux méthodes de traitement, la transformée en ondelettes et les Mel Frequency Cepstrum Coefficients (MFCC), sont comparées. La reconnaissance est assurée par un algorithme basé sur les modèles de mélange gaussiens. A l’issue d’essais où les deux prétraitements ont été mis à l’épreuve, en tenant compte de la résistance face au bruit ambiant, il est possible de constater que la transformée en ondelettes présente des performances supérieures aux MFCC, dans le cadre précis de l’étude. La reconnaissance sonore ne nécessitant qu’un son distinct à identifier pour pouvoir fonctionner, cette solution présente un fort potentiel d’adaptation à d’autres types d’assemblages, mais aussi d’autres problématiques. Ces trois systèmes permettent de balayer un certain éventail de possibilités, et les solutions présentées sont amenées à être croisées et bonifiées afin d’aboutir à des systèmes robustes et fiables, aux standards de l’industrie.
|
7 |
Modélisation, conception mécanique, étude cinématique et dynamique d'un robot hybride redondant à (6+3) degrés de libertéHarton, David 24 March 2024 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2019-2020 / Les robots collaboratifs prennent de plus en plus de place sur les lignes de production au sein des entreprises manufacturières. Leur facilité d'installation et d'utilisation ainsi que leur caractère sécuritaire constituent des avantages liés à leur utilisation. Les robots collaboratifs sériels sont les plus populaires dans l'industrie. Le principal avantage de ceux-ci est leur grand espace de travail. Cependant, l'inertie des architectures sérielles est généralement élevée, limitant ainsi les performances dynamiques du robot. Les robots parallèles sont plus avantageux sur ce point. Un principal avantage des robots parallèles collaboratifs est que les actionneurs sont situés près de la base, diminuant ainsi l'inertie, comparativement aux robot sériels. Cependant il existe peu de robots parallèles collaboratifs sur le marché. Dans ce mémoire est présenté un concept de robot hybride cinématiquement redondant utilisé pour des applications de coopération humain-robot à faible impédance. Ce robot d'architecture 3-[R(RR-RRR)SR] possède (6+3) degrés de liberté (ddl). La redondance du robot permet d'augmenter l'espace du travail notamment en rotation (comparativement à celui d'un robot non redondant d'architecture semblable) en diminuant le nombre de configurations singulières de type II dans l'espace de travail. Le robot est composé de trois jambes d'architecture hybride ayant chacune trois ddl et trois actionneurs ainsi qu'une plateforme composée d'un mécanisme parallèle plan à trois ddl. Les trois degrés de liberté redondants sont utilisés à la plateforme, afin d'y opérer une pince à partir des actionneurs aux jambes. Ce robot possède de grandes capacités en rotation, soient +-90° en inclinaison et en torsion. Ce robot est conçu de manière à ce qu'il soit rétrocommandable et qu'il ait une faible impédance et une faible inertie. Il ne possède aucun réducteur aux actionneurs. Le concept du robot présenté dans ce document est modulaire. En effet, l'architecture des jambes et de la plateforme peuvent différer légèrement afin d'adapter le robot à une application spécifique. Dans le cas présent, des jambes hybrides et une plateforme plane sont choisies pour des fins de simplicité et de maximisation de l'espace de travail. Dans ce document, les modèles cinématiques et dynamiques du robot, de la plateforme et des jambes sont présentés. Les étapes de conception mécanique ainsi qu'une étude de la sensibilité cinématique du robot sont également détaillés. / Collaborative robots become present on production lines in factories. Their easiness of installation and use and their safety features make them more attractive. Serial collaborative robots are the most popular in the industry. Their main advantage is their large workspace. However, the inertia of the members of serial robots is the main limitation of the dynamic performances. Parallel robots are more attractive on this aspect. The main advantage of parallel robots is that their actuators are located near the base, decreasing the inertia compared to serial robots. However, there are few parallel collaborative robots on the market. In this Master's thesis, a novel concept of a redundant hybrid robot used for low impedance physical human-robot interaction (pHRI) applications is presented. This robot has a 3-[R(RRRRR) SR] architecture and (6+3) degrees of freedom (dof). Redundancy allows to get a larger workspace especially in rotation (compared to a non-redundant robot with the same architecture) by avoiding some type II singularity configurations in the workspace. The robot has three 3-dof hybrid legs having three actuators, and the platform, which is a 3-dof parallel planar mechanism. The three redundant degrees of freedom are used at the platform to actuate a gripper from the leg actuators. The robot has a large rotational workspace, namely > +-90° in tilt and torsion. This robot is designed to be backdrivable, with a low impedance and a low inertia. The actuators have no gearbox. The robot presented in this document is modular. Indeed, the leg architecture and the platform may differ depending on the application. In the present case, hybrid legs and planar platform are chosen for simplicity and workspace maximisation purposes. In this document, kinematic and dynamic models of the robot are presented. The main mechanical design steps and a study of the kinetic sensitivity are also detailed.
|
Page generated in 0.0721 seconds